
CSE 303
Concepts and Tools for
Software Development

Magdalena Balazinska
Winter 2010

Lecture 19 – Inheritance
(virtual functions and abstract classes)

Where We Are

  We have already covered the introduction to C++

-  Basic syntax (hello world), namespaces

-  Basics of defining and using classes

-  Allocating objects on the stack and on the heap

-  Copy constructors, call-by-value, and call-by-reference

-  Started talking about inheritance

  Today, we will discuss inheritance in greater depth

-  Casting in C++

-  Virtual functions

-  Abstract classes
2 CSE 303 - Winter 2010

Our Inheritance Example

Property

Land

House

Base class

Derived class

Derived class

3 CSE 303 - Winter 2010

Last Time

  Last time we examined this example to see

-  Inheritance syntax

-  Access specifiers (public, protected, and private) and
what they mean with subclasses

-  What happens when we construct or destroy objects

  Next questions are

-  How to cast pointers

-  What happens when a class overrides a function of
its parent class... not always what you think!

4 CSE 303 - Winter 2010

C-Style Type Casting

  With inheritance, we often want to cast between
pointers to different classes in our class hierarchy

  C-style type casting is dangerous

  Compiler lets you do almost what you want

-  Example: can cast a void* to int

-  Example2: can cast any (A*) to a (B*)

  Even if A and B are unrelated

  You must be careful

  You must know what you are doing

  Hence, this can be error-prone

5 CSE 303 - Winter 2010

New C++ Cast Operators

  Four new cast operators

-  static_cast

-  dynamic_cast

-  const_cast

-  reinterpret_cast

  They make programmer's intent more clear

  Basic syntax example

double b;

int a = static_cast<int>(b);

6 CSE 303 - Winter 2010

static_cast and dynamic_cast

  static_cast

-  Basic cast operator as we know it (or almost)

-  Can change binary representation of converted expr.

-  For pointers to classes, checks types at compile time

  Classes must only be related to each other

  dynamic_cast

-  Can only be used with pointers

-  Checks object types at runtime

-  Use this operator for casting pointers to objects within
a class hierarchy (classes must be polymorphic)

  Example: cast_operators() in main.cc
7 CSE 303 - Winter 2010

const_cast and reinterpret_cast

  const_cast

-  Only removes or adds const qualifier

-  We will talk about the const qualifier in a few lectures

  reinterpret_cast

-  Enables arbitrary pointer casts

-  Unsafe and not portable

-  At least it is clear that cast is dangerous

  No need to know these last two for cse303

  But I encourage you to experiment with them

8 CSE 303 - Winter 2010

Function Overriding

  Derived class can override parent member function

  It simply declares a member function with

-  Same name as function in parent class

-  Same parameters

-  Example: toString

  To access parent member function from derived
class, use the scope resolution operator

-  Property::toString()

  What is the difference between overloading and
overriding?

9 CSE 303 - Winter 2010

Virtual Functions

  Gotcha with method overriding

-  By default, the invoked function is selected
statically, at compile time based on pointer type

  To enable dynamic binding and dispatching,
must declare a function to be virtual

-  virtual void toString2();

-  Once a function is virtual, it remains virtual all the
way down the class hierarchy

-  Nevertheless, declare it as virtual in all classes

  Examples: overriding_catch()
10 CSE 303 - Winter 2010

Virtual Destructor

  Make all destructors virtual

  Problem illustration (Y derives from X)

Y *ptrY = new Y();

X *ptrX = ptrY; // Implicit cast

delete ptrX;

  Without a virtual destructor, call to delete ptrX
calls destructor for X, even if ptrX points to a
subtype Y

  A virtual destructor solves this problem

11 CSE 303 - Winter 2010

Polymorphism

  Virtual member functions enable polymorphism

-  Accessing a virtual member function through a base-
class pointer produces different results depending on
runtime type of object

  To support polymorphism at runtime (i.e., dynamic
binding), the C++ compiler builds several data
structures at compile time

-  For each class that has at least one virtual function, it
builds a virtual function table (vtable)

12 CSE 303 - Winter 2010

Virtual Function Table (vtable)

_id

_price

Land l

_lot_size

_waterfront

Property

Land
Land vtable

~Land

toString2

ptr1

Land::~Land implementation

Property vtable

~Property

toString2

Property::~Property impl.

Property::toString2 impl.

Land::toString2 implementation

13 CSE 303 - Winter 2010

Abstract Classes

  In C++, there is no notion of interfaces

  Instead, we must use abstract classes

-  An abstract class cannot be instantiated

-  To make a class abstract, declare one member function
as pure virtual

-  virtual float getValue() = 0;

  An abstract class can provide a partial implementation
(ex: Property class)

  A class with only pure virtual member functions is
called a pure abstract class (ex: Element class)

-  A pure abstract class constitutes a true interface

14 CSE 303 - Winter 2010

Virtual Function Table (vtable)

_id

_price

Land l

_lot_size

_waterfront

Property

Land
Land vtable

~Land

toString2

getValue

ptr1

Land::~Land implementation

0

Property vtable

~Property

toString2

getValue

Land::getValue implementation

Property::~Property impl.

Property::toString2 impl.

Land::toString2 implementation

15

Pure Abstract Class Example

class Element { // Pure abstract class

 public:

 virtual int compare(const Element& other) = 0;

 virtual void print() = 0;

};

// Using multiple inheritance

class House: public Property, public Element {

...

virtual int compare(const Element& other) { ... }

virtual void print() { ... }

...

};
16 CSE 303 - Winter 2010

C++ Inheritance Summary

  C++ distinguishes between

-  Static binding by default

-  Dynamic binding for virtual member functions

  C++ allows multiple inheritance

  No notion of interface

  Instead (pure) abstract classes

  Explicit casting with four types of operators

17 CSE 303 - Winter 2010

Readings

  Carefully study the code that accompanies today's
lecture

18 CSE 303 - Winter 2010

