
CSE 303
Concepts and Tools for
Software Development

Magdalena Balazinska
Winter 2010

Lecture 16 – Tools: linker, build scripts, make

Where We Are

  We are done with Linux, shell scripts, and C

  We are in the middle of learning about tools

-  Already completed: preprocessor, debugger, svn

-  Today: libraries, linker, and make

-  Still to come: C++ and software engineering

2 CSE 303 - Winter 2010

Goal for Today

  At the end of today, you should understand

-  The sequence of operations involved in building an
executable and what happens at each step

-  The goal of makefiles

-  Be comfortable writing simple makefiles

  This is not the end of the story

-  Much more to makefiles than what we will show

-  After this class, you should also learn about
autoconf, automake, and cmake

3 CSE 303 - Winter 2010

Example

  Program composed of two modules

-  Queue module: queue.c, queue.h

-  Does not have a main

-  Main program: main-queue.c (uses queue)

4 CSE 303 - Winter 2010

Reminder: Header Files

header : A C file whose only purpose is to be included.

generally a filename with the .h extension

holds shared variables, types, and function declarations

key ideas:

every name.c intended to be a module has a name.h 

name.h declares all global functions/data of the module

other .c files that want to use the module will #include “name.h”

some conventions:
.c files never contain global function prototypes

.h files never contain definitions (only declarations)

never #include a .c file (only .h files)

5 CSE 303 - Winter 2010

Back to our Example

  Program composed of two modules

-  Queue module: queue.c, queue.h

-  Main program: main-queue.c (uses queue)

-  main-queue.c uses queue

-  For this reason it will #include “queue.h”

-  Now, it has enough information to be compiled by itself

6 CSE 303 - Winter 2010

Steps Involved in
Creating a C Program

  Review from last lecture

.c file

Editor

Preprocessor Preprocessed
C file

Compiler

Executable Linker .o file

7 CSE 303 - Winter 2010

Compiling our Example

  Program composed of two modules

-  Queue module: queue.c, queue.h

-  Main program: main-queue.c (uses queue)

  Step 1&2: Preprocess and compile each .c file

-  Use option -c to produce the .o file

-  Create queue.o and main-queue.o
-  gcc -Wall -g -c queue.c

-  gcc -Wall -g -c main-queue.c

8 CSE 303 - Winter 2010

The Goal of the Linker

  Compiled code (.o file) is not “runnable”

  We have to link it with other code to make an
executable

-  Where is the code for printf and malloc?

-  Where is the code for the queue module?

-  We only included the header files...

-  Need to find that code and put it in executable

-  That is what the linker does

  Normally, gcc/g++ hides this from you

9 CSE 303 - Winter 2010

Linking Step

  Linker transforms compiled code (.o files) into
executable programs

.c file

Editor

Preprocessor Preprocessed
C file

Compiler

Executable Linker .o file

10

Example

  Program composed of two modules

-  Queue module: queue.c, queue.h

-  Main program: main-queue.c (uses queue)

  Step 1&2: Preprocess and compile each .c file

-  Create queue.o and main-queue.o

-  gcc -Wall -g -c queue.c

-  gcc -Wall -g -c main-queue.c

  Step 3: Link files together to create executable

-  gcc -o main main-queue.o queue.o

11 CSE 303 - Winter 2010

Linking Overview

  If a C/C++ file uses but does not define a function
(or global variable), then the .o has “undefined
references”

-  Note: declarations do not count, only definitions

  Linker takes multiple .o files and “patches them” to
include the references

-  Literally moves code and changes instructions like
function calls

  Executable has no unresolved references

  Linker is called ld, but we will not invoke it directly.
We will use gcc

12 CSE 303 - Winter 2010

Static Linking

  Puts all necessary code into executable

-  The .o files are no longer needed after linking

  Note: use option -static to also force the use of
static linking for standard libraries

  Example: our queue test program

-  gcc -static -o main main-queue.o queue.o

-  (try linking with and without the -static option and
see the difference in size of your executable)

13 CSE 303 - Winter 2010

Creating a Static Library

  To distribute the code for a module, it is convenient to
put it all inside a library

  Let’s try to put the code for the queue and stack inside
a library

14 CSE 303 - Winter 2010

Creating a Static Library

  Create with ar (stands for “archiver”)

-  ar rc libdata.a queue.o stack.o

-  Creates a static library named libdata.a and puts
copies of object files queue.o and stack.o in it

-  If libdata.a exists, adds or replaces files in it

  Index the archive: ranlib libdata.a

-  Same as running ar with option -s

-  Improves performance during linking

-  Order inside the archive will no longer matter

15 CSE 303 - Winter 2010

Static Linking with Library

  Linking with library libdata.a
gcc -o main main-queue.o -L. -ldata

gcc -static -o main main-queue.o -L. -ldata

  Gcc will automatically link your executable with

-  libgcc.a

-  libc.a for C

-  libstdc++.a for C++

  Compile/link with option -v to see details

16 CSE 303 - Winter 2010

Static Linking Step-by-Step

  Begin: “Set of needed undefined functions” empty

  Action for .o file:

-  Include code in result

-  Remove all defined functions from set

-  Add to set all functions used but not yet defined

  Action for .a file: For each .o in order

-  If defines a needed function, proceed as above

-  Else skip

  End: If set of needed undefined functions empty,
create executable, else error

17 CSE 303 - Winter 2010

Library Gotchas

  Position of -ldata on command-line matters

-  Discover and resolve references in order

-  So typically list libraries after all object files

  Cycles

-  If two .a files need each other, you might need

 -lfoo -lbar -lfoo ...

  If you include math.h, you'll need -lm

  Cannot have repeated function names

18 CSE 303 - Winter 2010

Summary of Building an Executable

queue.c

stack.c

main-queue.c

Source Files

Step1: Compile

queue.o

stack.o

main-queue.o

Object Files

libdata.a

Static Libraries

Step2: Create
Libraries

main

Executable

Step3: Link

libgcc.a

libc.a

...

gcc -c queue.c
gcc -c stack.c
gcc -c main-queue.c
 -I specifies location of header files

ar rcs libdata.a stack.o queue.o
gcc -static -o main main-queue.o -L. -ldata

19

Dynamic Linking

  Static linking has disadvantages

-  More disk space, more memory when programs run

  Instead can use

-  Shared libraries (extension .so)
  Link in when program starts executing

  Saves disk space and memory

-  Dynamically linked/loaded libraries (while running)

  To experiment, link main with no option or with -static,
or -shared-libgcc

-  In between commands execute: ldd main
-  Prints shared library dependencies

-  And also check the size of main

20 CSE 303 - Winter 2010

Linking and Libraries Summary

  Main steps when building executable

-  Preprocessing (specific to C)

-  Compiling

-  Linking

  Process can get complex for large systems

-  Definitely don't want to do manually each time

-  Would like to automate the process... Makefile

  Know about potential problems. Learn how to solve
them as you encounter them

21 CSE 303 - Winter 2010

Make

  Two main goals

-  Automate the build process with a script

-  When a source file changes, rebuild only what is
needed: keep track of dependencies

  Why?

-  Do not want to retype long, complex commands

-  Easier for others to build the system

-  Want to shorten build time

  Especially important for large systems

22 CSE 303 - Winter 2010

Recompilation Management

  The “theory” behind avoiding unnecessary
compilation is a “dependency graph”

  To create target t, need

-  Sources s1, s2, ..., sn

-  A command a that will create target from sources

  If t newer than all si, assume no reason to rebuild it

  Otherwise, recursive rebuild

-  If si is itself a target, check if need to rebuild it

-  If need to rebuild, use the given command a

23 CSE 303 - Winter 2010

Dependency Graph Example

main-queue.c

queue.o

stack.o

Object Files

main-queue.o main

Executable

libdata.a

Static Libraries

libgcc.a

libc.a

...

queue.c

stack.c

Source Files

queue.h

stack.h

24 CSE 303 - Winter 2010

Basic Idea Behind a Makefile

  Enables us to define targets & dependencies

  In form of triples: target, source, command(s)

target: sources (aka dependencies)
 command1
 command2
 ...
queue.o: queue.c queue.h
 gcc -Wall -c queue.c

  Warning: command lines must start with TAB

  If a command spans multiple lines, use \

25 CSE 303 - Winter 2010

Make

  On the command line

make -f nameOfMakefile target

  Defaults

-  If no -f, looks for a file named Makefile

-  If no target specified, uses first target in the file

  The make utility

-  Examines the dependency graph

-  Examines the file-modification times

-  Recursively decides what to rebuild

-  Note: make is language independent (java, c, latex)

26 CSE 303 - Winter 2010

Standard Targets

  all: make everything

all: main-queue main-stack

  clean: remove any generated files, to “start over”
and have just the source

clean:

 rm -f *.o main-queue main-stack

  Phony targets: “all” and “clean” never exist

27 CSE 303 - Winter 2010

Variables

  We have seen the basics, now let's get more
sophisticated with our Makefiles

  You can define variables in a Makefile

OBJ = main-stack.o stack.o

main-stack: $(OBJ)

 gcc -o main-stack $(OBJ)

  Help avoid error-prone duplications

-  List of object files

-  List of executables

  In make, variables are often called macros

28 CSE 303 - Winter 2010

Default Macros

  There exists a lot of default macros

  You must respect the naming conventions

  Override defaults in the Makefile

CC = gcc

CFLAGS = -Wall -g

queue.o: queue.c queue.h

 $(CC) $(CFLAGS) -c queue.c
  Override defaults with environment variables

export CFLAGS =”-Wall -g”

  View list of macros: make -p

Revenge of Funny Characters

  Internal macros

-  $@ designates the current target

-  $^ designates all prerequisites

-  $< designates left-most prerequisite

  Pattern rules

%.o: %.c

 $(CC) $(CFLAGS) -c $<
  Basic ones already defined

-  They are called implicit rules

Dependencies

  Our Makefile is starting to look quite elegant

  But, we are still listing dependencies manually

-  Keeping track of dependencies is hard

-  It is easy to forget some header files

  This is not make's problem

-  Make has no understanding of programming
languages. It only understands rules

  Because this is error-prone, there are often
language-specific tools that can keep track of
dependencies for you

Dependency-Generator Example

  gcc –MM [src files]

-  Useful variants include -M and -MG (man gcc)

-  Automatically creates a rule for you

-  One approach, run via a phony depend target

depend: $(SRC)
 $(CC) -M $^ > .depend
-  Then include the resulting file in your Makefile

include .depend

  makedepend combines many of these steps

  Read more if you are interested in this topic

Installing Program from Source

  You don't need to know this for the class

  Typical four steps when installing software

autoconf (sometimes setup script instead)

configure ––prefix=/where/to/install/

make

make install

  Configure script: defines variables needed in the
Makefile, performs various checks before compiling

  Configure script has many options so try

configure --help

Readings

  Programming in C

-  Chapter 15 and Appendix C

  Make/Makefile tutorials

-  http://www.gnu.org/software/make/manual/make.html

-  http://www.eng.hawaii.edu/Tutor/Make/

  Extra references: man pages for gcc, ranlib, ar, ld

  In the future (no need to read for this class)

-  autoconf/automake: http://www.gnu.org/manual/

-  cmake: http://www.cmake.org/

34 CSE 303 - Winter 2010

