
CSE 303
Concepts and Tools for
Software Development

Magdalena Balazinska
Winter 2010

Lecture 15 – The C Preprocessor
Tools: introduction to the linker

Where We Are

  After today, we will have covered

-  Linux (just an introduction to Linux)

-  Shell scripts and utilities

-  Programming in C

-  Several tools: debugger, version control, linker

  This week and in future weeks, we will cover

-  More tools: make

-  C++

-  Introduction to software engineering

2 CSE 303 - Winter 2010

Steps Involved in
Creating a C Program

  Preprocessing occurs before compilation

  Use gcc -E to perform only preprocessing

.c file

Editor

Preprocessor Preprocessed
C file

Compiler

Executable Linker .o file

3 CSE 303 - Winter 2010

C Preprocessor

  All preprocessor directives begin with pound sign: #

  Three main uses of C preprocessor

-  Include files

-  Define symbolic constants and macros

-  Compile parts of code conditionally

4 CSE 303 - Winter 2010

Preprocessor: Including Files

  The #include directive

-  Causes a copy of a specified file to be included in
place of the directive

-  File is itself preprocessed before being included

  #include <filename>

-  Search in pre-defined system include file directories
(these directories are implementation dependent)

-  Used for standard libraries

  #include “filename”

-  Search in local directory

5 CSE 303 - Winter 2010

Compiler -I option

  gcc -I dir ...

-  Add the directory dir to the list of directories to be
searched for header files

-  Directories named by -I are searched before the
standard system include directories

  Example include.c, includeA.h, headers/
includeB.h

6 CSE 303 - Winter 2010

Preprocessor: Defining Constants

  The #define directive

-  Creates symbolic constants and macros

  #define id text

-  All subsequent occurrences of id are replaced with
text before program is compiled

  #define BUFFER_SIZE 4096

  #define DEFAULT_FILE “output.txt”

  Examples: constant.c
-  stdbool.h defines bool, true, and false

-  stddef.h define NULL

7 CSE 303 - Winter 2010

Preprocessor: Defining Macros

  A lot like constants, but can take arguments

  During preprocessing

-  Step 1: Arguments are substituted

-  Step 2: Macro is expanded

  #define SUM(x,y) ((x) + (y))

  Then

-  int a = SUM(3,4);

-  Becomes int a = ((3) + (4));

  Examples: macro.c

8 CSE 303 - Winter 2010

More about Macros

  Try to avoid them if you can

-  It is better to use functions!

-  Your goal: clarity and correctness

-  Do not worry about optimization until you know that
something is a bottleneck

  Use them only when truly needed

#define PRINT(x) \

printf("%s:%d %s\n",__FILE__,__LINE__,x);

  (__FILE__ and __LINE__ are predefined macros
that expand to the current file and line number)

9 CSE 303 - Winter 2010

Preprocessor:
Conditional Constructs

  Preprocessor supports other useful statements

-  #if, #else, #endif, #ifdef, etc.

  These statements enable programmers to control

-  Execution of preprocessor directives

-  Compilation of program code

-  By switching various statements on or off

10 CSE 303 - Winter 2010

Typical Usage 1

  Ensure header files are included only once

#ifndef INCLUDEA_H

#define INCLUDEA_H

... content of includeA.h ...

#endif

  Check if symbolic name is already defined

  If not, then define it

  Example: include2.c, includeA.h,
includeB.h, and includeC.h

11 CSE 303 - Winter 2010

Typical Usage 2

  Conditional compilation

#ifdef DEBUG

#define PRINT(x) printf("%s”,x);

#else

#define PRINT(x)

#endif

  Example: conditional.c

-  gcc -D DEBUG conditional.c

-  gcc conditional.c

  Other usage: adapt code to architecture, OS

12 CSE 303 - Winter 2010

Typical Usage 2 (Example 2)

  Example: fancy-conditional.c

-  gcc -D LOG_LEVEL=2 fancy-conditional.c

-  gcc -D LOG_LEVEL=1 fancy-conditional.c

-  gcc fancy-conditional.c

13 CSE 303 - Winter 2010

Useful macro: assert (in assert.h)

  Usage: assert(expression)

-  If value of expression is true, nothing happens

-  If value of expression is false, assert prints an error
message and calls abort

  Especially useful for

-  Testing preconditions (example stack not empty)

  Example: assert.c

  Disable asserts by defining NDEBUG

-  gcc -D NDEBUG assert.c

14 CSE 303 - Winter 2010

Steps Involved in
Creating a C Program

  Compiler transforms source code (.c files) into
machine language code, a.k.a. object code (.o files)

  Use gcc -c to stop after compiling

.c file

Editor

Preprocessor Preprocessed
C file

Compiler

Executable Linker .o file

15 CSE 303 - Winter 2010

The Goal of the Linker

  Use option -c to produce the .o file

  Compiled code (.o file) is not “runnable”

  We have to link it with other code to make an
executable

-  Where is the code for printf and malloc?

-  We only included the header files...

-  Need to find that code and put it in executable

-  That is what the linker does

  Normally, gcc/g++ hides this from you

16 CSE 303 - Winter 2010

Steps Involved in
Creating a C Program

  Linker transforms compiled code (.o files) into
executable programs

.c file

Editor

Preprocessor Preprocessed
C file

Compiler

Executable Linker .o file

17 CSE 303 - Winter 2010

Linking Overview

  If a C/C++ file uses but does not define a function
(or global variable), then the .o has “undefined
references”

-  Note: declarations do not count, only definitions

  Linker takes multiple .o files and “patches them” to
include the references

  Executable has no unresolved references

  Linker is called ld, but we will not invoke it directly.
We will use gcc... more next lecture

18 CSE 303 - Winter 2010

Readings

  Programming in C

-  Chapter 13

-  Chapter 18, section on “Debugging with the
preprocessor”

-  Appendix C “Compiling prorams with gcc”

  Scheme through the man page for gcc

-  man gcc

19 CSE 303 - Winter 2010

