
CSE 303
Concepts and Tools for
Software Development

Magdalena Balazinska
Winter 2010

Lecture 15 – The C Preprocessor
Tools: introduction to the linker

Where We Are

  After today, we will have covered

-  Linux (just an introduction to Linux)

-  Shell scripts and utilities

-  Programming in C

-  Several tools: debugger, version control, linker

  This week and in future weeks, we will cover

-  More tools: make

-  C++

-  Introduction to software engineering

2 CSE 303 - Winter 2010

Steps Involved in
Creating a C Program

  Preprocessing occurs before compilation

  Use gcc -E to perform only preprocessing

.c file

Editor

Preprocessor Preprocessed
C file

Compiler

Executable Linker .o file

3 CSE 303 - Winter 2010

C Preprocessor

  All preprocessor directives begin with pound sign: #

  Three main uses of C preprocessor

-  Include files

-  Define symbolic constants and macros

-  Compile parts of code conditionally

4 CSE 303 - Winter 2010

Preprocessor: Including Files

  The #include directive

-  Causes a copy of a specified file to be included in
place of the directive

-  File is itself preprocessed before being included

  #include <filename>

-  Search in pre-defined system include file directories
(these directories are implementation dependent)

-  Used for standard libraries

  #include “filename”

-  Search in local directory

5 CSE 303 - Winter 2010

Compiler -I option

  gcc -I dir ...

-  Add the directory dir to the list of directories to be
searched for header files

-  Directories named by -I are searched before the
standard system include directories

  Example include.c, includeA.h, headers/
includeB.h

6 CSE 303 - Winter 2010

Preprocessor: Defining Constants

  The #define directive

-  Creates symbolic constants and macros

  #define id text

-  All subsequent occurrences of id are replaced with
text before program is compiled

  #define BUFFER_SIZE 4096

  #define DEFAULT_FILE “output.txt”

  Examples: constant.c
-  stdbool.h defines bool, true, and false

-  stddef.h define NULL

7 CSE 303 - Winter 2010

Preprocessor: Defining Macros

  A lot like constants, but can take arguments

  During preprocessing

-  Step 1: Arguments are substituted

-  Step 2: Macro is expanded

  #define SUM(x,y) ((x) + (y))

  Then

-  int a = SUM(3,4);

-  Becomes int a = ((3) + (4));

  Examples: macro.c

8 CSE 303 - Winter 2010

More about Macros

  Try to avoid them if you can

-  It is better to use functions!

-  Your goal: clarity and correctness

-  Do not worry about optimization until you know that
something is a bottleneck

  Use them only when truly needed

#define PRINT(x) \

printf("%s:%d %s\n",__FILE__,__LINE__,x);

  (__FILE__ and __LINE__ are predefined macros
that expand to the current file and line number)

9 CSE 303 - Winter 2010

Preprocessor:
Conditional Constructs

  Preprocessor supports other useful statements

-  #if, #else, #endif, #ifdef, etc.

  These statements enable programmers to control

-  Execution of preprocessor directives

-  Compilation of program code

-  By switching various statements on or off

10 CSE 303 - Winter 2010

Typical Usage 1

  Ensure header files are included only once

#ifndef INCLUDEA_H

#define INCLUDEA_H

... content of includeA.h ...

#endif

  Check if symbolic name is already defined

  If not, then define it

  Example: include2.c, includeA.h,
includeB.h, and includeC.h

11 CSE 303 - Winter 2010

Typical Usage 2

  Conditional compilation

#ifdef DEBUG

#define PRINT(x) printf("%s”,x);

#else

#define PRINT(x)

#endif

  Example: conditional.c

-  gcc -D DEBUG conditional.c

-  gcc conditional.c

  Other usage: adapt code to architecture, OS

12 CSE 303 - Winter 2010

Typical Usage 2 (Example 2)

  Example: fancy-conditional.c

-  gcc -D LOG_LEVEL=2 fancy-conditional.c

-  gcc -D LOG_LEVEL=1 fancy-conditional.c

-  gcc fancy-conditional.c

13 CSE 303 - Winter 2010

Useful macro: assert (in assert.h)

  Usage: assert(expression)

-  If value of expression is true, nothing happens

-  If value of expression is false, assert prints an error
message and calls abort

  Especially useful for

-  Testing preconditions (example stack not empty)

  Example: assert.c

  Disable asserts by defining NDEBUG

-  gcc -D NDEBUG assert.c

14 CSE 303 - Winter 2010

Steps Involved in
Creating a C Program

  Compiler transforms source code (.c files) into
machine language code, a.k.a. object code (.o files)

  Use gcc -c to stop after compiling

.c file

Editor

Preprocessor Preprocessed
C file

Compiler

Executable Linker .o file

15 CSE 303 - Winter 2010

The Goal of the Linker

  Use option -c to produce the .o file

  Compiled code (.o file) is not “runnable”

  We have to link it with other code to make an
executable

-  Where is the code for printf and malloc?

-  We only included the header files...

-  Need to find that code and put it in executable

-  That is what the linker does

  Normally, gcc/g++ hides this from you

16 CSE 303 - Winter 2010

Steps Involved in
Creating a C Program

  Linker transforms compiled code (.o files) into
executable programs

.c file

Editor

Preprocessor Preprocessed
C file

Compiler

Executable Linker .o file

17 CSE 303 - Winter 2010

Linking Overview

  If a C/C++ file uses but does not define a function
(or global variable), then the .o has “undefined
references”

-  Note: declarations do not count, only definitions

  Linker takes multiple .o files and “patches them” to
include the references

  Executable has no unresolved references

  Linker is called ld, but we will not invoke it directly.
We will use gcc... more next lecture

18 CSE 303 - Winter 2010

Readings

  Programming in C

-  Chapter 13

-  Chapter 18, section on “Debugging with the
preprocessor”

-  Appendix C “Compiling prorams with gcc”

  Scheme through the man page for gcc

-  man gcc

19 CSE 303 - Winter 2010

