CSE 303

Concepts and Tools for
Software Development

Magdalena Balazinska
Winter 2010
Lecture 15 — The C Preprocessor
Tools: introduction to the linker

Where We Are

. After today, we will have covered

- Linux (just an introduction to Linux)

- Shell scripts and utilities

- Programming in C

- Several tools: debugger, version control, linker

« This week and in future weeks, we will cover

- More tools: make
- C++
- Introduction to software engineering

Steps Involved in

Creating a C Program

« Preprocessing occurs before compilation

« Use gcc -E to perform only preprocessing

Editor
}
3 _ =
r_cf”e —1 Preprocessor — Prep(r)ofqlessed -~ Compiler
e

l

. = ~
Executable [Linker [+ oo filej

C Preprocessor

« All preprocessor directives begin with pound sign: #

« Three main uses of C preprocessor

- Include files
- Define symbolic constants and macros
- Compile parts of code conditionally

Preprocessor: Including Files

e The #include directive

- Causes a copy of a specified file to be included in
place of the directive

- File is itself preprocessed before being included

e #include <filename>

- Search in pre-defined system include file directories
(these directories are implementation dependent)

- Used for standard libraries

e #include “filename”

- Search in local directory

Compiler -| option

e JCC -1 dir

- Add the directory dir to the list of directories to be
searched for header files

- Directories named by -1 are searched before the
standard system include directories

« Example include.c, includeA.h, headers/
includeB.h

Preprocessor: Defining Constants

e The #define directive

- Creates symbolic constants and macros
e #define id text

- All subsequent occurrences of id are replaced with
text before program is compiled

e #define BUFFER SIZE 4096
e #tdefine DEFAULT FILE “output.txt”
« Examples: constant.c

- stdbool.h defines bool, true, and false
- stddef.h define NULL

Preprocessor: Defining Macros

« A lot like constants, but can take arguments
« During preprocessing

- Step 1: Arguments are substituted
- Step 2: Macro is expanded

e #define SUM(x,vy) ((x) + (y))
« Then

- 1nt a = SUM(3,4);

- Becomes int a = ((3) + (4));

« Examples: macro.c

More about Macros

. Tryto avoid them if you can
- It is better to use functions!

- Your goal: clarity and correctness

- Do not worry about optimization until you know that
something is a bottleneck

« Use them only when truly needed

#fdefine PRINT (x) \
printf ("%s:%d %$s\n", FILE , LINE ,x);

. (FILE and LINE are predefined macros
that expand to the current file and line number)

Preprocessor:

Conditional Constructs

« Preprocessor supports other useful statements
- #1f, #else, #endif, #ifdef, eftc.

. These statements enable programmers to control

- Execution of preprocessor directives
- Compilation of program code
- By switching various statements on or off

Typical Usage 1

« Ensure header files are included only once
#ifndef INCLUDEA H

#define INCLUDEA H

... content of includeA.h ...

#endif

« Check if symbolic name is already defined

. If not, then define it

« Example: include2.c, includeA.h,
includeB.h, and includeC.h

Typical Usage 2

« Conditional compilation
#ifdef DEBUG
#define PRINT (x) printf ("%$s”,x);
felse
#define PRINT (X)
fendif
« Example: conditional.c
- gcc —-D DEBUG conditional.c

- gcc conditional.c

« Other usage: adapt code to architecture, OS

Typical Usage 2 (Example 2)

« Example: fancy-conditional.c

- gcc -D LOG LEVEL=2Z2 fancy-conditional.c
- gcc -D LOG LEVEL=1 fancy-conditional.c

- gcc fancy-conditional.c

Useful macro: assert (in assert.h)

« Usage:. assert (expression)

- If value of expression is true, nothing happens

- If value of expression is false, assert prints an error
message and calls abort

« Especially useful for
- Testing preconditions (example stack not empty)

« Example: assert.c

« Disable asserts by defining NDERUG
- gcc —-D NDEBUG assert.c

Steps Involved in

Creating a C Program

« Compiler transforms source code (.c files) into
machine language code, a.k.a. object code (.o files)

« Use gcc -c to stop after compiling

Editor
3 - —
r_c file [Preprocessor — Prep(r:o]f_:lessed —! Compiler
e
I

. = ~
Executable [Linker [+ oo filej

The Goal of the Linker

« Use option -c to produce the .o file
« Compiled code (.o file) is not “runnable”

« \We have to link it with other code to make an
executable

- Where is the code for printf and malloc?
- We only included the header files...
- Need to find that code and put it in executable
- That is what the linker does
« Normally, gcc/g++ hides this from you

Steps Involved in

Creating a C Program

« Linker transforms compiled code (.o files) into

executable programs

Editor
3 - —
r_c file [Preprocessor — Prep(r:o]f_:lessed —! Compiler
e

. = ~
Executable [Linker [+ oo filej

Linking Overview

If a C/C++ file uses but does not define a function
(or global variable), then the . o has “undefined
references”

- Note: declarations do not count, only definitions

Linker takes muiltiple .o files and “patches them” to
iInclude the references

Executable has no unresolved references

Linker is called 1d, but we will not invoke it directly.
We will use gcc... more next lecture

Readings

« Programming in C
- Chapter 13

- Chapter 18, section on “Debugging with the
preprocessor’

- Appendix C “Compiling prorams with gcc”

« Scheme through the man page for gcc

- man gcc

