CSE 303

Concepts and Tools for
Software Development

Magdalena Balazinska
Winter 2010
Lecture 13 — Data Structures and
Memory Management

Assignment 4

« Assignment 4 will be released later today
o It is the most difficult assignment this quarter
o It is the longest assignment this quarter

« Suggested schedule
- Work on problems 1, 2, 3, 4, and 6 before Monday
- Focus on the midterm next week
- Finish the assignment after the midterm

This assignment will give you great programming
experience! You will see the difference.

Where We Are

« We have seen

- The concept of a struct
- Dynamic memory allocation (malloc/free)

« Given these two concepts, we can now create
dynamic data structures

- Structures whose size grows and shrinks during
program execution

- Concrete examples today: stack in class

- (and queue on your own)
- You will create a list and a tree in assignment 4

Program Modules

« Our program is longer today, so we will split it into
two modules: stack and main-stack

- Such a split will also allow us to reuse the stack
module in different programs

« Overall, we will have three files

- stack. c: Functions that implement the stack
« push, pop, is_empty, and print
- stack.h: All the function prototypes
- main-stack.c: A program that uses the stack

« Must include stack.h

Self-Referential Structures

« Contains a pointer to a struct of the same type

typedef struct node {

int value;
struct node *next;
} Node;

« Can contain more than one pointer
- Example: a double-linked list will have 2 pointers
« These pointers are called links

« Typical building block for data structures
« Let's build a stack and, on your own, a queue...

Stack Data Structure

Node *top;
Pointer to a Node structure

\\ fNode.value
top 13 1@ 2 @— 1@
#/ ‘L 1

— NULL
Node.next

One Node
structure

Push an Element onto the Stack

fNode.value

top |@ 3 @— 2| @ — 1 ‘F——:j__

— NULL

Node.next

Push an Element onto the Stack

yNode.value

top @714 |@— 3 @ — 2 @®— 1 ‘F——:j__

— NULL

Node.next

top

Pop an Element from the Stack

yNode.value

3]0l 20 {1]e
I Ex

— NULL

Node.next

Writing the Stack Module

« Now that we know how a stack works, let's take a
look at the corresponding C code

Print the Content of a Stack

top 3

vold print (Node *top) {
Node *current = top;
while (current != NULL) {
printf ("%d\n",current->value);

current = current->next;

Create a New Stack

o Initializing stack: Node *top = NULL;

top ‘1

Push Data Onto Stack

// Client code top

Empty stack

Node *top = NULL;

‘A
“

int 1 = 3;

push (&top, 1)

How should we implement the push function?

Push First Data ltem Onto Stack

o Step O: Initial state top &l Empty stack

. Step 1: Al

ocate space for a new element

1

New element

v

o Step 2: Update pointers to add element to stack

top

._

L >

1

New stack

v

Push Subsequent Data Iltem

Onto Stack
» Step O: Initial state top |@ 1@

« Step 1: Allocate space for a new element

2@

New element

v

o Step 2: Update pointers to add element to stack

top @12 |@—{1|@® [New stack

The “push” Function

volid push (Node **top, 1nt value) {
Node *e = (Node*)malloc (sizeof (Node))
1if (le) |
fprintf (stderr, "Out of memory\n") ;

return;
}
e->value = value;
e->next = *top;

*top = €;

Popping Data From Stack

// Client code
Node *top = NULL;
push (&top, 1);
push (&top, 2);
push (&top, 3);

int value = pop(&top)

How should we implement the pop function?

Popping Data From Stack

« Pop an element from stack

top 3@ 2 @— 1@

Step 1

top (@] [3l@]2[@l11]e
| s

Step 2: deallocate

Popping Data From Stack

int pop (Node **top) {

1f (! 1s empty(*top)) {
Node *removed = *top;
int value = removed->value;
*top = removed->next;

free (removed) ;

return value;

}

return -1;

Other Data Structures

« Other data structures in C can be implemented in a
similar manner

o Self-referential structures form the basic elements

« When inserting
- Allocate space for new element (malloc)
- Initialize its fields
- Update pointers

« When removing

- Update pointers
- Reclame space used by deleted element (free)

Additional Example

« The following slides show another data structure:
the queue

« You can find the code for that example in
queue.c, gqueue.h, main—-gqueue.c

Second Example: Queue

« This time we need to keep around two pointers

- head: pointer to the head of the queue
- tail: pointer to the end of the queue

head tail
® ®

Enqueue Operation

« Enqueue a value: value =4

» Step 1: Allocate memory for new element and
initialize fields
New element

4@
head tail -

Enqueue Operation

« Step 2: Update links to add element to the end

of the queue tail
o
4]®
head o
. T

Enqueue Operation

» Special case: adding first element to an empty
queue

nead talil

o o 4&1

Enqueue Operation

» Special case: adding first element to an empty
queue

head tall
® ®

ile
s

Dequeue Operation

« Elements are removed from the head of the
queue

head tail

Dequeue Operation

« Step 1: Update links
« Step 2: Deallocate element

head tail

Dequeue Operation

« Special case: removing the last element from

a queue

head tall head tall
() ® o o
1@
v

e Source code is in:

- queue.h gqueue.c, mailn-gueue.c

Summary

« Quite easy to build useful structures
. Be systematic

- One method allocates new elements
« Example: enqueue, push

- One method deallocates elements
« Example: dequeue, pop

. Be careful

- Watch-out for corner cases (ex: empty queue)

Frequent Bugs

« Memory leak: forgetting to free memory

- Example: remove element from list, forget to free it, and
lose all pointers to that element

« Dangling pointers
- Can cause crash

- Can cause you to overwrite other data

« Good news: tools exist to help you catch these
bugs: dmalloc, valgrind (we will not have time to
cover these tools in class)

Readings

« No additional readings for this class
« Examine the examples carefully

- Pay attention to the parameters
- Either Node * (pointer to a Node)
- Or Node™ (pointer to a pointer to a Node)

