
CSE 303
Concepts and Tools for
Software Development

Magdalena Balazinska
Winter 2010

Lecture 13 – Data Structures and
Memory Management

Assignment 4

  Assignment 4 will be released later today

  It is the most difficult assignment this quarter

  It is the longest assignment this quarter

  Suggested schedule

-  Work on problems 1, 2, 3, 4, and 6 before Monday

-  Focus on the midterm next week

-  Finish the assignment after the midterm

  This assignment will give you great programming
experience! You will see the difference.

2 CSE 303 - Winter 2010

Where We Are

  We have seen

-  The concept of a struct

-  Dynamic memory allocation (malloc/free)

  Given these two concepts, we can now create
dynamic data structures

-  Structures whose size grows and shrinks during
program execution

-  Concrete examples today: stack in class
-  (and queue on your own)

-  You will create a list and a tree in assignment 4
3 CSE 303 - Winter 2010

Program Modules

  Our program is longer today, so we will split it into
two modules: stack and main-stack

-  Such a split will also allow us to reuse the stack
module in different programs

  Overall, we will have three files

-  stack.c: Functions that implement the stack
  push, pop, is_empty, and print

-  stack.h: All the function prototypes

-  main-stack.c: A program that uses the stack
  Must include stack.h

4 CSE 303 - Winter 2010

Self-Referential Structures

  Contains a pointer to a struct of the same type

typedef struct node {

 int value;
 struct node *next;
} Node;

  Can contain more than one pointer

-  Example: a double-linked list will have 2 pointers

  These pointers are called links

  Typical building block for data structures

  Let's build a stack and, on your own, a queue...

5 CSE 303 - Winter 2010

Stack Data Structure

top 1 2 3

Node *top;
Pointer to a Node structure

One Node
structure

Node.next

Node.value

NULL

6 CSE 303 - Winter 2010

Push an Element onto the Stack

top 1 2 3

Node.next

Node.value

NULL

4

7 CSE 303 - Winter 2010

Push an Element onto the Stack

top 1 2 3

Node.next

Node.value

NULL

4

8 CSE 303 - Winter 2010

Pop an Element from the Stack

top 1 2 3

Node.next

Node.value

NULL

4 X

9 CSE 303 - Winter 2010

Writing the Stack Module

  Now that we know how a stack works, let's take a
look at the corresponding C code

10 CSE 303 - Winter 2010

Print the Content of a Stack

void print(Node *top) {

 Node *current = top;

 while (current != NULL) {

 printf("%d\n",current->value);

 current = current->next;

 }

}

top 1 2 3

NULL

11 CSE 303 - Winter 2010

Create a New Stack

  Initializing stack: Node *top = NULL;

top

Push Data Onto Stack

// Client code

Node *top = NULL;

int i = 3;

push(&top, i);

How should we implement the push function?

top Empty stack

Push First Data Item Onto Stack

  Step 0: Initial state top

1 New element

  Step 1: Allocate space for a new element

Empty stack

  Step 2: Update pointers to add element to stack

top 1 New stack

Push Subsequent Data Item
Onto Stack

  Step 0: Initial state

2 New element

  Step 1: Allocate space for a new element

  Step 2: Update pointers to add element to stack

New stack

top 1

top 1 2

The “push” Function

void push(Node **top, int value) {

 Node *e = (Node*)malloc(sizeof(Node));

 if (!e) {

 fprintf(stderr,"Out of memory\n");

 return;

 }

 e->value = value;

 e->next = *top;

 *top = e;

}

16 CSE 303 - Winter 2010

Popping Data From Stack

// Client code

Node *top = NULL;

push(&top, 1);

push(&top, 2);

push(&top, 3);

...

int value = pop(&top)

How should we implement the pop function?

Popping Data From Stack

  Pop an element from stack

top 1 2 3

top 1 2 3

Step 1

Step 2: deallocate

Popping Data From Stack

int pop(Node **top) {

 if (! is_empty(*top)) {

 Node *removed = *top;

 int value = removed->value;

 *top = removed->next;

 free(removed);

 return value;

 }

 return -1;

}

19 CSE 303 - Winter 2010

Other Data Structures

  Other data structures in C can be implemented in a
similar manner

  Self-referential structures form the basic elements

  When inserting

-  Allocate space for new element (malloc)

-  Initialize its fields

-  Update pointers

  When removing

-  Update pointers

-  Reclame space used by deleted element (free)

20 CSE 303 - Winter 2010

Additional Example

  The following slides show another data structure:
the queue

  You can find the code for that example in
queue.c, queue.h, main-queue.c

21 CSE 303 - Winter 2010

Second Example: Queue

head

1 2 3

tail

  This time we need to keep around two pointers

-  head: pointer to the head of the queue

-  tail: pointer to the end of the queue

Enqueue Operation

head

1 2 3

tail

  Enqueue a value: value = 4

  Step 1: Allocate memory for new element and
initialize fields

4
New element

Enqueue Operation

head

1 2 3

tail

  Step 2: Update links to add element to the end
of the queue

4

Enqueue Operation

head tail

  Special case: adding first element to an empty
queue

4

Enqueue Operation

head tail

  Special case: adding first element to an empty
queue

4

Dequeue Operation

head

1 2 3

tail

  Elements are removed from the head of the
queue

Dequeue Operation

head

1 2 3

tail

  Step 1: Update links

  Step 2: Deallocate element

Dequeue Operation

head

1

tail

  Special case: removing the last element from
a queue

head tail

  Source code is in:

- queue.h queue.c, main-queue.c

Summary

  Quite easy to build useful structures

  Be systematic

-  One method allocates new elements

  Example: enqueue, push

-  One method deallocates elements
  Example: dequeue, pop

  Be careful

-  Watch-out for corner cases (ex: empty queue)

30 CSE 303 - Winter 2010

Frequent Bugs

  Memory leak: forgetting to free memory

-  Example: remove element from list, forget to free it, and
lose all pointers to that element

  Dangling pointers

-  Can cause crash

-  Can cause you to overwrite other data

  Good news: tools exist to help you catch these
bugs: dmalloc, valgrind (we will not have time to
cover these tools in class)

31 CSE 303 - Winter 2010

Readings

  No additional readings for this class

  Examine the examples carefully

-  Pay attention to the parameters

-  Either Node * (pointer to a Node)

-  Or Node** (pointer to a pointer to a Node)

32 CSE 303 - Winter 2010

