
CSE 303
Concepts and Tools for
Software Development

Magdalena Balazinska
Winter 2010

Lecture 10 – Tools: debuggers (gdb)
C: file I/O

Tools

We will learn about several tools this quarter

  Debuggers: gdb

  Build scripts: make

  Version control systems: svn

  Profilers: gprof (if time permits at the end)

  The concepts behind these tools are orthogonal to
the programming language

2 CSE 303 - Winter 2010

Plan for Today

  Today we start to talk about tools

-  Debuggers: gdb

  Before gdb, we will first tie some loose ends

-  Arrays of pointers from lecture 9

-  Printf/scanf from lecture 8

-  File I/O

3 CSE 303 - Winter 2010

Array of Pointers

char* s[3] = { “Hello”, “World”, “!” };

s[0]

s[1]

s[2]

'\0' 'l' 'l' 'H' 'e' 'o'

'\0' 'l' 'r' 'W' 'o' 'd'

'!' '\0'

4 CSE 303 - Winter 2010

from lecture 9

Note that this is different from char s[3][6] !
See example on board

Command-Line Arguments

int main (int argc, char** argv) {

 printf(“Prog name: %s“, argv[0]);

 int i;

 for (i = 1; i < argc; i++) {

 printf(“Next arg is %s”, argv[i]);
 }

}

// Can also use

int main (int argc, char* argv[]) {

}

5 CSE 303 - Winter 2010

from lecture 9

See arguments.c

A Note About Strings

•  The following creates an array of pointers to strings

•  The strings are constants

•  char* s[3] = { “Hello”, “World”, “!” };
•  Similarly

1.  char * s = “hello”; // creates a pointer to a constant string

2.  char s[] = “hello”; // creates an array initialized with “hello”

If you need to edit s, must use option (2)

•  Strings that hold command-line args can be modified

6 CSE 303 - Winter 2010

Formatted Input and Output

  What we already know

-  Input and output is performed with streams

-  Streams are just sequences of bytes

-  stdin connected to keyboard

-  stdout and stderr connected to screen

  Formatted output: printf

  Formatted input: scanf

7 CSE 303 - Winter 2010

from lecture 8

Formatted Input and Output

  printf(“format string”, v1, v2, ...);

  scanf(“format string”, v1, v2, ...);

  Basic formats

-  %d: int

-  %f: float, double

-  %c: char

-  %s: char* (strings)

-  %e: scientific notation

  Examples: format.c

8 CSE 303 - Winter 2010

from lecture 8

File Input/Output

  We assume you know about files in general

  We only show you the C syntax

  We examine sequential-access files

-  You will need to read a file in hw3

9 CSE 303 - Winter 2010

Files and Streams

  C views a file as a sequential stream of bytes

-  Ends with an end-of-file marker or

-  Ends at specific byte number recorded by system

  When you open a file

-  A stream is associated with it

  You can use same functions to read from stdin or
write to stdout/stderr as you do for files

-  Main functions: fprintf, fscanf, fgets, fputs

10 CSE 303 - Winter 2010

Reading/Writing Files

  Opening a file returns a file pointer: FILE*

  FILE: struct that contains the file descriptor

-  Note: we will learn about structures later

  File descriptor is an index into the open file table

-  Used by OS to locate the file control block (FCB)

  Three structs are predefined and preset

-  stdin, stdout, stderr

-  Examples: fileIO.c in lecture 8 extras

11 CSE 303 - Winter 2010

Role of Debugger

  Main goal: Help you understand what is going on
inside a program while it executes

  Debugger monitors execution of a program

  A debugger typically allows you to:

-  Start your program with given arguments

-  Suspend execution when some condition occurs

-  Examine the suspended state of your program

-  Sometimes can also change things to see what happens next

12 CSE 303 - Winter 2010

Debugger Variants

  Debuggers come in many forms and flavors

  We will focus on one of them: gdb

  We will examine it in isolation

-  But many debuggers are integrated into IDE

  ... ok... let’s try to fix a buggy program...

  Example: debug_me.c

13 CSE 303 - Winter 2010

Main Debugging Need in C

  Where did my program crash?

  gdb can tell us, but we need the following:

-  Compile code with option -g

-  “Produce debugging information in the
operating system’s native format (stabs,
COFF, XCOFF, or DWARF). GDB can work with
this debugging information”. (from gcc's
manpage)

-  Without that option, the debugger is unable to provide
much useful info except for call stack

14 CSE 303 - Winter 2010

Locating a Segmentation Fault

  Approach1: Execute program within gdb
gdb debug_me

... starts debugger... once you get command line:

(gdb) run abcde

…

Program received signal SIGSEGV, Segmentation fault.

0x08048440 in total (my_string=0xbffff788 "abcde") at test.c:16

16 total += my_string[i];

Missing separate debuginfos, use: debuginfo-install glibc-2.10.2-1.i686

15 CSE 303 - Winter 2010

Now we know
problem location

Locating a Segmentation Fault

(gdb) where

#0 0x08048440 in total (my_string=0xbffff788 "abcde")
at test.c:16

#1 0x080484e3 in main (argc=2, argv=0xbffff624) at
test.c:60

(gdb)

16 CSE 303 - Winter 2010

Now we see the
call stack too

Locating a Segmentation Fault

  Approach2: Examine a core file

-  Need to set maximum size allowed for core files

ulimit -c 16000
-  Run program as usual ./debug_me

Segmentation fault (core dumped)
-  Examine core file with gdb

gdb debug_me core
... wait for gdb to start...

(gdb) where
-  Same output as in Approach 1

17 CSE 303 - Winter 2010

Suspending the Program

  Place a breakpoint at given line number
gdb debug_me

(gdb) break debug_me.c:38

(gdb) run abcde

Breakpoint 1, reverse (my_string=0xbffff788 "abcde")
at debug_me.c:38

38 new_string[dst] = my_string[src];

(gdb)

18 CSE 303 - Winter 2010

Inspecting the Program

  Inspecting arguments and local variables

(gdb) info args // Show arguments

(gdb) info locals // Show local vars

(gdb) info variables // Show locals & globals

(gdb) p variable_name // Print value of var

  Concrete examples

(gdb) p new_string[0]

(gdb) p &src

19 CSE 303 - Winter 2010

Inspecting the Program

  Where are we?

(gdb) where (or backtrace) // Call stack

(gdb) frame // Current activation record

(gdb) up // Move up call stack

(gdb) down // Move back down

(gdb) l // Print 10 lines of context

  Commands such as: “info locals” depend on the
activation record that you are examining. They
produce different output as your move around with
“up” and “down”

20 CSE 303 - Winter 2010

Step-by-step Execution

  Executing step-by-step

(gdb) n // Execute one statement and stop at next

(gdb) s // Step inside function

(gdb) c // Continue until next breakpoint

21 CSE 303 - Winter 2010

More About Breakpoints

  Different types of break points

(gdb) break function_name

(gdb) break file_name:function_name

(gdb) break line_nb

(gdb) delete // Delete all breakpoints

(gdb) clear file_name:function_name

(gdb) clear line_nb

(gdb) break XXX if expr // Conditional break

(gdb) help XXX // To get more info

22 CSE 303 - Winter 2010

Exiting

(gdb) quit

23 CSE 303 - Winter 2010

References (read as you need)

  Programming in C

-  Chapter 18

-  Chapter 16 (pp 137-152)

  gdb documentation

-  http://www.gnu.org/software/gdb/

24 CSE 303 - Winter 2010

