
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Hal Perkins

Winter 2009

Lecture 23— Concurrency Part II: Locks

CSE 303 Winter 2009, Lecture 23 1



'

&

$

%

Where are we

Done:

• Basics of shared-memory multithreading

• Fork-join parallelism

• Critical sections via atomic

Doing:

• Critical sections via careful use of locks (a.k.a. mutexes)

• Pitfalls of using locks

• Other concurrency gotchas

CSE 303 Winter 2009, Lecture 23 2



'

&

$

%

Lock basics

A lock is acquired and released by a thread.

• At most one thread “holds it” at any moment

• Acquiring it “blocks” until the holder releases it and the blocked

thread acquires it

– Many threads might be waiting; one will “win”.

– The lock-implementor avoids race conditions on the

lock-acquire

• So to keep two things from happening at the same time, surround

them with the same lock-acquire/lock-release

CSE 303 Winter 2009, Lecture 23 3



'

&

$

%

Locks in C/Java

C: Need to initialize and destroy mutexes (a synonym for locks).

• The joys of C

An initialized (pointer to a) mutex can be locked or unlocked via

library function calls.

Java: A synchronized statement is an acquire/release.

• Any object can serve as a lock.

• Lock is released on any control-transfer out of the block (return,

break, exception, ...)

• “Synchronized methods” just save keystrokes.

CSE 303 Winter 2009, Lecture 23 4



'

&

$

%

Choosing how to lock

Now we know what locks are (how to make them, what

acquiring/releasing means), but programming with them correctly and

efficiently is difficult...

• As before, if critical sections are too small we have races; if too big

we may not communicate enough to get our work done efficiently.

• But now, if two “synchronized blocks” grab different locks, they

can be interleaved even if they access the same memory

– A “data race”

• Also, a lock-acquire blocks until a lock is available and only the

current-holder can release it.

– Can have “deadlock” ...

CSE 303 Winter 2009, Lecture 23 5



'

&

$

%

Deadlock
Object a;

Object b;

void m1() { void m2() {

synchronized a { synchronized b {

synchronized b { synchronized a {

... ...

}} }}

}

A cycle of threads waiting on locks means none will ever run again!

Avoidance: All code acquires locks in the same order (very hard to

do). Ad hoc: Don’t hold onto locks too long or while calling into

unknown code.

Recovery: detect deadlocks, kill off and rerun one of the processes

(databases)

CSE 303 Winter 2009, Lecture 23 6



'

&

$

%

Rules of Thumb
Any one of the following are sufficient for avoiding races:

• Keep data thread-local (an object is reachable, or at least only

accessed by, one thread).

• Keep data read-only (do not assign to object fields after an

object’s constructor)

• Use locks consistently (all accesses to an object are made while

holding a particular lock)

• Use a partial-order to avoid deadlock (over-simple example: do

not hold multiple locks at once?)

These are tough invariants to get right, but that’s the price of

multithreaded programming today.

But... one way to do all the above is to have “one lock for all shared

data” and that is inefficient...

CSE 303 Winter 2009, Lecture 23 7



'

&

$

%

False sharing

“False sharing” refers to not allowing separate things to happen in

parallel.

Example:

synchronized x { synchronized x {

++y; ++z;

} }

More realistic example: one lock for all bank accounts rather than one

for each account

On the other hand, acquiring/releasing locks is not so cheap, so

“locking more with the same lock” can improve performance.

This is the “locking granularity” question

• Coarser vs. finer granularity

CSE 303 Winter 2009, Lecture 23 8



'

&

$

%

Very challenging situation

A favorite example for ridiculing locks:

If each bank account has its own lock, how do you write a “transfer”

method such that no other thread can see the “wrong total balance”?

// race (not data race) // potential deadlock

void xfer(int a,Acct other){ void xfer(int a,Acct other){

synchronized(this) { synchronized(this) {

balance += a; synchronized(other) {

other.balance -= a; balance += a;

} other.balance -= a;

} }}}

The problem is there is no relative order among accounts, so “inverse

transfers” could deadlock

CSE 303 Winter 2009, Lecture 23 9



'

&

$

%

A final gotcha

You would naturally assume that all memory accesses happen in “some

consistent order” that is “determined by the code”.

Unfortunately, compilers and chips are often allowed to cheat

(reorder)! The assertion in the right thread may fail!

initially flag==false

data = 42; while(!flag) {}

flag = true; assert(data==42);

To disallow reordering the programmer must:

• Use lock acquires (no reordering across them), or

• Declare flag to be volatile (for experts, not us)

CSE 303 Winter 2009, Lecture 23 10



'

&

$

%

Conclusion

Threads make a lot of otherwise-correct approaches incorrect.

• Writing “thread-safe” libraries can be excruciating.

• Use an expert implementation, e.g., Java’s ConcurrentHashMap?

But they are increasingly important for efficient use of computing

resources (“the multicore revolution”).

Locks and shared-memory are (just) one common approach.

Learn about other useful synchronization mechanisms (e.g., condition

variables) in CSE451.

CSE 303 Winter 2009, Lecture 23 11


