
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Hal Perkins

Winter 2009

Lecture 2— Processes, Users, Shell Special Characters, Emacs

CSE 303 Winter 2009, Lecture 2 1

'

&

$

%

Where are we

It’s like we started over using the computer from scratch.

And all we can do is run dinky programs at the command-line.

But we are learning a model (the system is files, processes, and users)

and a powerful way to control it (the shell).

If we get the model right, hopefully we can learn lots of details quickly.

Today:

• The rest of the model briefly: Processes and Users

• More programs (ps, chmod, kill, . . .)

• Special shell characters (*, ~, . . .)

• Text editing (particularly emacs)

CSE 303 Winter 2009, Lecture 2 2

'

&

$

%

Announcements &c.

• For file and directory operations (rm, cp, mv, . . .), use man or

Pocket Guide pages 37–55 (or maybe 37–70)

• Homework 1A is due Friday night. You can do it after today.

• Homework 1B (basic shell scripting) will be posted shortly. We’ll

talk about scripting starting Friday.

• Bash reference manual in html linked from course webpage, or use

info bash from the shell.

• Email request 1: If you send email to your instructor, please put

“303” somewhere in the subject heading.

• Email request 2: Your instructor & TAs are outnumbered and

can’t (successfully) serve as a 24/7 email help desk. Take

advantage of the discussion board and other resources if you can.

CSE 303 Winter 2009, Lecture 2 3

'

&

$

%

Office Hours

Here’s the initial schedule (also on the course web). Can/will be

adjusted if we have gaps or are covering hours that nobody needs.

All office hours are in the CSE 006 lab.

• Monday 11:30-12:20 Chen, 2-3 Perkins

• Tuesday 11-12 Vijaywargi, 2-3 Perkins

• Wednesday 2-3:30 Cam

• Thursday 11-12 Chen

• Friday 12-1 Vijaywargi

CSE 303 Winter 2009, Lecture 2 4

'

&

$

%

Users
• There is one file-system, one operating system, one or more CPUs,

and multiple users.

• whoami

• ls -l and chmod (permissions), quota (limits)

– Make your homework unreadable by others!

• /etc/passwd (or equivalent) guides the login program:

– Correct username and password

– Home directory

– Which shell to open (pass it the home directory)

– The shell then takes over, with startup scripts (e.g.,

.bash login). (ls -a)

• one “superuser” a.k.a. root. (Change passwords, halt machine,

change system directories, add/remove user accounts, . . .)

CSE 303 Winter 2009, Lecture 2 5

'

&

$

%

Processes

• A running program is called a process. An application (e.g.,

emacs), may be running as 0, 1, or 57 processes at any time.

• The shell runs a program by “launching a process” waiting for it

to finish, and giving you your prompt back.

– What you want for ls, but not for emacs.

– &, jobs, fg, bg, kill — job control

– ps, top

• A running shell is just a process that kills itself when interpreting

the exit command.

• (Apologies for aggressive vocabulary, but we’re stuck with it for

now.)

CSE 303 Winter 2009, Lecture 2 6

'

&

$

%

That’s most of a running system

• File-system, users, processes

• The operating system manages these

• Processes can do I/O, change files, launch other processes.

• Other things: Input/Output devices (monitor, keyboard, network)

• GUIs don’t change any of this, but they do hide it a bit.

Now: Back to the shell. . .

CSE 303 Winter 2009, Lecture 2 7

'

&

$

%

Complicating the shell

So far, our view of the shell is the barest minimum:

• builtins affect subsequent interpretations. New: source

• Otherwise, the first “word” is a program run with the other

“words” passed as arguments.

– Programs interpret arguments arbitrarily, but conventions exist.

But you want (and bash has) so much more:

• Filename metacharacters

• Pipes and Redirections (redirecting I/O from and to files)

• Command-line editing and history access

• Shell and environment variables

• Programming Constructs (ifs, loops, arrays, expressions, . . .)

All together, a very powerful feature set, but awfully unelegant.

CSE 303 Winter 2009, Lecture 2 8

'

&

$

%

Filename metacharacters

Much happens to a command-line to turn it into a “call program with

arguments” (or “invoke builtin”).

Certain characters can expand into (potentially) multiple filenames:

• ~foo – home directory of user foo

• ~ – current user’s home directory (same as ~$user or

‘whoami‘).

• * (by itself) – all files in current directory

• * – match 0 or more filename characters

• ? – match 1 filename character

• [abc], [a-E], [^a], . . . more matching

Remember, this happens before deciding what to pass to a program.

CSE 303 Winter 2009, Lecture 2 9

'

&

$

%

Filename metacharacters: why

• Manually, you use them all the time to save typing.

• In scripts, you use them for flexibility. Example: You do not know

what files will be in a directory, but you can still do: cat *

(though a better script would skip directories).

But what if it’s not what you want? Use quoting ("*" or ’*’) or

escaping (*).

The rules on what needs escaping where are very arcane.

A way to experiment: echo

• echo args. . . copies its arguments to standard output after

expanding metacharacters.

CSE 303 Winter 2009, Lecture 2 10

'

&

$

%

History

• The history builtin

• The ! special character

– !!, !n, !abc, . . .

– Can add, substitute, etc.

This is really for fast manual use; not so useful in scripts.

CSE 303 Winter 2009, Lecture 2 11

'

&

$

%

Aliases

Idea: Define a new command that expands to something else (not a

full script)

• alias repeat=echo

• alias hello="echo hello"

• alias rm="rm -i" % for cautious users

Often put in a file read by source or in a startup file read

automatically.

CSE 303 Winter 2009, Lecture 2 12

'

&

$

%

Aside: Bash startup files

Bash reads (sources) specific files when it starts up. Put commands

here that you want to execute every time you run bash.

Which file gets read depends on whether bash is starting as a “login

shell” or not

• Login shell: ~/.bash_profile (or others if this is not found)

• Non-login shell: ~/.bashrc (or others if not found)

Suggestion: Include the following in your .bash_profile file so the

commands in .bashrc will execute regardless of how the shell starts up

if [-f ~/.bashrc]; then source ~/.bashrc; fi

CSE 303 Winter 2009, Lecture 2 13

'

&

$

%

Where are we

Features of the bash “language”:

1. builtins

2. program execution

3. filename expansion (Pocket Guide 22–23)

4. history & aliases

5. command-line editing

6. shell and environment variables

7. programming constructs

But file editing is too useful to put off. . . so a detour to emacs (which

shares some editing commands with bash)

CSE 303 Winter 2009, Lecture 2 14

'

&

$

%

What is emacs?
A programmable, extensible text editor, with lots of goodies for

programmers.

Not a full-blown IDE. Much “heavier weight” than vi.

Top-6 commands:

• C-g

• C-x C-f

• C-x C-s, C-x C-w

• C-x C-c

• C-x b

• C-k, C-w, C-y, . . .

Take the emacs tutorial to get the hang of the basics.

Customizable with elisp (starting with your .emacs).

CSE 303 Winter 2009, Lecture 2 15

'

&

$

%

Command-line editing

Lots of control-characters for moving around and editing the

command-line. (Pocket Guide page 28, emacs-help, and Bash

reference manual Section 8.4.)

They make no sense in scripts.

Gotcha: C-s is a strange one (stops displaying output until C-q, but

input does get executed).

Good news: many of the control characters have the same meaning in

emacs (and bash has a vi “mode” too).

CSE 303 Winter 2009, Lecture 2 16

'

&

$

%

Putting it all together: Java

Java is a programming language; you can write and run programs in

various environments.

The javac and java programs “compile” and “run” Java programs

and emacs has a decent Java mode.

So we can write Java files in emacs, and use the shell to run the

program and pass arguments.

(The Java program takes the class whose main should be run as its

first argument and gives it the remaining arguments.)

CSE 303 Winter 2009, Lecture 2 17

'

&

$

%

Summary

As promised, we are flying through this stuff!

• Your computing environment has files, processes, users, a shell,

and programs (including emacs).

• Lots of small programs for files, permissions, manuals, etc.

• The shell has strange rules for interpreting command-lines. So far:

– Filename expansion

– History expansion

• The shell has lots of ways to customize/automate. So far:

– alias and source

– run (i.e., automatically source) .bash profile or .bashrc

when shell starts.

Next: I/O Redirection, Shell Programming

CSE 303 Winter 2009, Lecture 2 18

