
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Hal Perkins

Spring 2008

Lecture 22— Shared-Memory Concurrency

CSE303 Spring 2008, Lecture 22 1

'

&

$

%

Concurrency

Computation where “multiple things happen at the same time” is

inherently more complicated than sequential computation.

• Entirely new kinds of bugs and obligations

Two forms of concurrency:

• time-slicing : only one computation at a time but pre-empt to

provide responsiveness or mask I/O latency.

• true parallelism: more than one CPU (e.g., the lab machines have

two, the attu machines have 4, ...)

No problem unless the different computations need to communicate or

use the same resources.

CSE303 Spring 2008, Lecture 22 2

'

&

$

%

Example: Processes

The O/S runs multiple processes “at once”.

Why? (Convenience, efficient use of resources, performance)

No problem: keep their address-spaces separate.

But they do communicate/share via files (and pipes).

Things can go wrong, e.g., a race condition:

echo "hi" > someFile

foo=‘cat someFile‘

assume foo holds the string hi??

The O/S provides synchronization mechanisms to avoid this

• See CSE451; we will focus on intraprocess concurrency.

CSE303 Spring 2008, Lecture 22 3

'

&

$

%

The Old Story

We said a running Java or C program had code, a heap, global

variables, a stack, and “what is executing right now” (in assembly, a

program counter).

C, Java support parallelism similarly (other languages can be different):

• One pile of code, global variables, and heap.

• Multiple “stack + program counter”s — called threads

• Threads can be pre-empted whenever by a scheduler

• Threads can communicate (or mess each other up) via shared

memory.

• Various synchronization mechanisms control what thread

interleavings are possible.

– “Do not do your thing until I am done with my thing”

CSE303 Spring 2008, Lecture 22 4

'

&

$

%

Basics

C: The POSIX Threads (pthreads) library

• #include <pthread.h>

• Link with -lpthread

• pthread_create takes a function pointer and an argument for it;

runs it as a separate thread.

• Many types, functions, and macros for threads, locks, etc.

Java: Built into the language

• Subclass java.lang.Thread overriding run

• Create a Thread object and call its start method

• Any object can “be synchronized on” (later)

CSE303 Spring 2008, Lecture 22 5

'

&

$

%

Why do this?

• Convenient structure of code

– Example: 2 threads using information computed by the other

– Example: Failure-isolation – each “file request” in its own

thread so if a problem just “kill that request”.

– Example: Fairness – one slow computation only takes some of

the CPU time without your own complicated timer code.

Avoids starvation.

• Performance

– Run other threads while one is reading/writing to disk (or

other slow thing that can happen in parallel)

– Use more than one CPU at the same time

∗ The way computers will get faster over the next 10 years

∗ So no parallelism means no faster.

CSE303 Spring 2008, Lecture 22 6

'

&

$

%

Simple synchronization

If one thread did nothing of interest to any other thread, why is it

running?

So threads have to communicate and coordinate.

• Use each others’ results; avoid messing up each other’s

computation.

Simplest two ways not to mess each other up (don’t underestimate!):

1. Do not access the same memory.

2. Do not mutate shared memory.

Next simplest: One thread does not run until/unless another thread is

done

• Called a join

CSE303 Spring 2008, Lecture 22 7

'

&

$

%

Using Parallel Threads

• A common pattern for expensive computations:

– Split the work

– Join on all the helper threads

– Called fork-join parallelism

• To avoid bottlenecks, each thread should have about the same

amount of work (load-balancing)

– Performance depends on number of CPUs available and will

typically be less than “perfect speedup”

• C vs. Java (specific to threads)

– Java takes an OO approach (shared data via fields of Thread)

– Java separates creating the Thread-object and creating the

running-thread

CSE303 Spring 2008, Lecture 22 8

'

&

$

%

Less structure

Often you have a bunch of threads running at once and they might

need the same mutable memory at the same time but probably not.

Want to be correct without sacrificing parallelism.

Example: A bunch of threads processing bank transactions:

• withdraw, deposit, transfer, currentBalance, ...

• chance of two threads accessing the same account at the same

time very low, but not zero.

• want mutual exclusion (a way to keep each other out of the way

when there is contention)

Another example: Parallel search through an arbitrary graph

CSE303 Spring 2008, Lecture 22 9

'

&

$

%

The Issue

struct Acct { int balance; /* ... other fields ... */ };

int withdraw(struct Acct * a, int amt) {

if(a->balance < amt) return 1; // 1==failure

a->balance -= amt;

return 0; // 0==success

}

This code is correct in a sequential program.

It may have a race condition in a concurrent program, allowing a

negative balance.

Discovering this bug is very hard with testing since the interleaving has

to be “just wrong”.

CSE303 Spring 2008, Lecture 22 10

'

&

$

%

atomic
Programmers must indicate what must appear to happen all-at-once.

int withdraw(struct Acct * a, int amt) {

atomic {

if(a->balance < amt) return 1; // 1==failure

a->balance -= amt;

}

return 0; // 0==success

}

Reasons not to do “too much” in an atomic:

• Correctness: If another threads needs an intermediate result to

compute something you need, must “expose” it.

• Performance: Parallel threads must access disjoint memory

– Actually read/read conflicts can happen in parallel

CSE303 Spring 2008, Lecture 22 11

'

&

$

%

Getting it “just right”

This code is probably wrong because critical sections too small:

atomic { if(a->balance < amt) return 1; }

atomic { a->balance -= amt; }

This code (skeleton) is probably wrong because critical section too big:

• Assume other guy does not compute until the data is set.

atomic {

data_for_other_guy = 42; // set some global

ans = wait_for_other_guy_to_compute();

return ans;

}

CSE303 Spring 2008, Lecture 22 12

'

&

$

%

So far

Shared-memory concurrency where multiple threads might access the

same mutable data at the same time is tricky

• Must get size of critical sections just right

It’s worse because

• atomic does not yet exist in languages like C and Java

• (Major thread of programming language research at UW.)

Instead programmers must use locks (a.k.a. mutexes) or other

mechanisms, usually to get the behavior of critical sections

• But misuse of locks will violate the “all-at-once” property

• Or lead to other bugs we haven’t seen yet

CSE303 Spring 2008, Lecture 22 13

