
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Dan Grossman

Spring 2007

Lecture 28— Code-Pointers vs. Objects; Course Wrap-Up

Dan Grossman CSE303 Spring 2007, Lecture 28 1



'

&

$

%

Where are we

• Final is Tuesday; today’s material not on it

– Emphasize second half of course, but Makefiles and being able

to read basic Bash scripts is fair game

• Course evaluations for next 20 minutes

• Then one last “tie things together” piece and a few minutes of

summary

Dan Grossman CSE303 Spring 2007, Lecture 28 2



'

&

$

%

You have grading to do

I am going to distribute course evaluation forms so you may rate the quality

of this course. Your participation is voluntary, and you may omit specific

items if you wish. To ensure confidentiality, do not write your name on the

forms. There is a possibility your handwriting on the yellow written

comment sheet will be recognizable; however, I will not see the results of this

evaluation until after the quarter is over and you have received your grades.

Please be sure to use a No. 2 PENCIL ONLY on the scannable form.

I have chosen (name) to distribute and collect the forms. When you are

finished, he/she will collect the forms, put them into an envelope and mail

them to the Office of Educational Assessment. If there are no questions, I

will leave the room and not return until all the questionnaires have been

finished and collected. Thank you for your participation.

I’ll come back at 2:50.

Dan Grossman CSE303 Spring 2007, Lecture 28 3



'

&

$

%

Objects vs. Code Pointers

If you really study the provided code with this lecture I predict:

• You’ll understand C, struct layouts, & code pointers much better

• You’ll understand a lot about how objects are actually

implemented

– Which is one useful way to understand what they are

Key points:

• A pointer to an object can be subclassed with new private fields,

making the foreach method in C++ much more useful than the

foreach function in C

• Ways to give the C version the same usefulness:

– “pass a void* that’s passed back” (cf. pthread_create)

– Code up OOP in C manually (passing “this”, upcasting, etc.)

Dan Grossman CSE303 Spring 2007, Lecture 28 4



'

&

$

%

Course Summary

A lot of comfort and de-magicalizing

• 90% of you thought 90% of your classmates knew more of “that

practical stuff”

A lot of pragmatic application of computer science

1. There are concepts behind gdb, but there’s also value in knowing

a couple handfuls of commands

2. The best computer scientists are not the folks who have the

largest number of utilities, options, and features memorized

• But the best computer scientists also don’t know the least

• And they’re definitely not afraid to learn new ones

Dan Grossman CSE303 Spring 2007, Lecture 28 5



'

&

$

%

Some concepts too

We did not just pick up one strange set of rules after another!

• Shell-scripting is about automating program-invocation

• C programming is about a lower level of computing where:

– all data is just bits and pointers are explicit

– memory is managed manually

• Debuggers and profilers are about how to characterize and

measure running programs

• Linking, make, etc. are about how code is created and combined

to make running programs

• Assertions and specifications are about assumptions and the

robustness of larger programs

Dan Grossman CSE303 Spring 2007, Lecture 28 6



'

&

$

%

Societal implications

And we talked about ethics too

• We talked about it like computer scientists

• (Overly) logical, rational, understanding limitations of technology

and humans

• “We” should not be making all the decisions ourselves, but we

should be actively engaged in the process

Dan Grossman CSE303 Spring 2007, Lecture 28 7



'

&

$

%

The Ultimate Goal

5 years from now, look at the course webpage and think this whole

course was a waste of time.

After all, you won’t remember not knowing this stuff.

And you won’t understand why you need a teacher to help you pick up

a new tool or automate a repetitive task.

From lecture 1: There is an amorphous set of things computer

scientists know about and novice programmers don’t. Knowing them

empowers you in computing, lessens the “friction” of learning in other

classes, and makes you a mature programmer.

“There is more to programming than Java methods”

“There is more to software development than programming”

“There is more to computer science than software development”

“There is more to computing’s effects than computer science”

Dan Grossman CSE303 Spring 2007, Lecture 28 8


