
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Dan Grossman

Spring 2007

Lecture 24— C++ continued

Dan Grossman CSE303 Spring 2007, Lecture 24 1

'

&

$

%

In the middle of C++

Doing a tiny fraction of an enormous language:

• Many small conveniences over C

• OOP without everything being a pointer to a heap object

• OOP with manual memory management and lots of HYCSBWK

things

• OOP with different kinds of inheritance and overriding

Back to our first class-definition in Property.h, Property.cc...

Dan Grossman CSE303 Spring 2007, Lecture 24 2

'

&

$

%

OOP in C++, part 1

Like Java:

• Fields vs. methods, static vs. instance, constructors

• Method overloading (functions, operators, and constructors too)

Not quite like Java:

• access-modifiers (e.g., private) syntax and default

• declaration separate from implementation (like C)

• funny constructor syntax, default parameters (e.g., ... = 0)

Nothing like Java:

• Objects vs. pointers to objects

• Destructors and copy-constructors

• virtual vs. non-virtual (to be discussed)

Dan Grossman CSE303 Spring 2007, Lecture 24 3

'

&

$

%

Stack vs. heap

Java: cannot stack-allocate an object (only a pointer to one).

C: can stack-allocate a struct, then initialize it.

C++: stack-allocate and call a constructor (where this is the object’s

address, as always)

• Property p1(10000);

Java: new Property(...) calls constructor, returns heap-allocated

pointer.

C: Use malloc and then initialized, must free exactly once later.

C++: Like Java, but can also do new int(42). Like C must

deallocate, but must use delete instead of free.

Dan Grossman CSE303 Spring 2007, Lecture 24 4

'

&

$

%

Destructors

An object’s destructor is called just before the space for it is reclaimed.

A common use: Reclaim space for heap-allocated things pointed to

(first calling their destructors).

• But not if there are other pointers to it (aliases)?!

Meaning of delete x: call the destructor of pointed-to heap object,

then reclaim space.

Destructors also get called for stack-objects (when they leave scope).

Advice: Always make destructors virtual (learn why soon)

Dan Grossman CSE303 Spring 2007, Lecture 24 5

'

&

$

%

Arrays

Create a heap-allocated array of objects: new A[10];

• Calls default (zero-argument) constructor for each element.

• Convenient if there’s a good default initialization.

Create a heap-allocated array of pointers to objects: new A*[10]

• More like Java (but not initialized?)

• As in C, new A() and new A[10] have type A*.

• new A* and new A*[10] both have type A**.

• Unlike C, to delete a non-array, you must write delete e

• Unlike C, to delete an array, you must write delete [] e

Else HYCSBWK – the deleter must know somehow what is an array.

Dan Grossman CSE303 Spring 2007, Lecture 24 6

'

&

$

%

Digression: Call-by-reference

In C, we know function arguments are copies

• But copying a pointer means you still point to the same

(uncopied) thing

Same in C++, but a “reference parameter” (the & character after it)

is different.

Callee writes: void f(int& x) { x = x + 1; }

Caller writes: f(y)

But it’s as though the caller wrote f(&y) and everywhere the callee

said x they really said *x.

So that little & has a big meaning.

Dan Grossman CSE303 Spring 2007, Lecture 24 7

'

&

$

%

Copy Constructors

In C, we know x=y or f(y) copies y (if a struct, then member-wise

copy).

Same in C++, unless a copy-constructor is defined, then do whatever

it says.

A copy-constructor by definition takes a reference parameter (else we’d

need to copy, but that’s what we’re defining) of the same type.

Let’s not talk about the const.

Our example use is strange (why increment a counter), but useful for

understanding what happens.

Dan Grossman CSE303 Spring 2007, Lecture 24 8

'

&

$

%

Now more OOP: Subclassing

To me, OOP is “all about” subclasses overriding methods.

• Often not what you want, but what makes OOP fundamentally

different from, say, functional programming (CSE341)

C++ gives you lots more options than Java with different defaults, so

it’s easy to scream “compiler bug” when you mean “I’m using the

wrong feature”...

Basic subclassing:

• class D : public C { ... }

• This is public inheritance; C++ has other kinds too (won’t cover)

– Differences affect visibility and issues when you have multiple

superclasses (won’t cover)

– So do not forget the public keyword

Dan Grossman CSE303 Spring 2007, Lecture 24 9

'

&

$

%

More on subclassing

• Not all classes have superclasses (unlike Java with Object)

• I prefer terms “superclass” and “subclass” but C++ programmers

tend to use “base class” and “derived class”

– Just a terminology thing

• Our example code: House derives from Land which derives from

Property

• As in Java, can add fields/methods/constructors, and override

methods.

Dan Grossman CSE303 Spring 2007, Lecture 24 10

'

&

$

%

Construction and destruction

• Constructor of base class gets called before constructor of derived

class

– Default (zero-arg) constructor unless you specify a different

one after the : in the constructor.

• Destructor of base class gets called after destructor of derived

class

So constructors/destructors really extend rather than override, since

that is typically what you want.

Dan Grossman CSE303 Spring 2007, Lecture 24 11

'

&

$

%

Method overriding, part 1

If a derived class defines a method with the same name and argument

types as one defined in the base class (perhaps because of an

ancestor), it overrides (i.e., replaces) rather than extends.

If you want to use the base-class code, you specify the base class when

making a method call.

• Like super in Java (no such keyword in C++ since there may be

multiple inheritance)

Warning: the title of this slide is part 1.

Dan Grossman CSE303 Spring 2007, Lecture 24 12

