
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Dan Grossman

Spring 2007

Lecture 21— Linking Wrap-Up; Concurrency Part 1

Dan Grossman CSE303 Spring 2007, Lecture 21 1

'

&

$

%

Where are we

• Saw Java’s “very late” class-loading

• In the middle of ld’s static-linking

– Need to learn how archives (.a files) work

• A bit on shared-libraries and dynamic-linking

Then concurrency:

• Multiple threads of execution (call-stacks) at once!

– Why, how, what goes wrong, how to control it

Dan Grossman CSE303 Spring 2007, Lecture 21 2

'

&

$

%

Linking

If a C file uses but does not define a function (or global variable) foo,

then the .o has “unresolved references”. Declarations don’t count;

only definitions.

The linker takes multiple .o files and “patches them” to include the

references. (It literally moves code and changes instructions like

function calls.)

An executable must have no unresolved references (you have seen this

error message).

What: Definitions of functions/variables

When: The linker creates an executable

Where: Other .o files on the command-line (and much more...)

Dan Grossman CSE303 Spring 2007, Lecture 21 3

'

&

$

%

More about where
The linker and O/S don’t know anything about main or the C library.

That’s why gcc “secretly” links in other things.

We can do it ourselves, but we would need to know a lot about how

the C library is organized. Get gcc to tell us:

• gcc -v -static hello.c

• Should be largely understandable soon.

• -static (stick with the simple “get all the code you need into

a.out story)

• the secret *.o files: (they do the stuff before main gets called,

which is why gcc gives errors about main not being defined).

• -lc: complicated story about finding the library (a.k.a. “archive”)

libc.a and including any files that provide still-unresolved

references.

Dan Grossman CSE303 Spring 2007, Lecture 21 4

'

&

$

%

Archives
An archive is the “.o equivalent of a .jar file” (though history is the

other way around).

Create with ar program (lots of features, but fundamentally take .o

files and put them in, but order matters).

The semantics of passing ld an argument like -lfoo is complicated

and often not what you want:

• Look for what: file libfoo.a (ignoring shared libraries for now),

when: at link-time, where: defaults, environment variables

(LIBPATH ?) and the -L flags (analogous to -I).

• Go through the .o files in libfoo.a in order.

– If a .o defines a needed reference, include the .o.

– Including a .o may add more needed references.

– Continue.

Dan Grossman CSE303 Spring 2007, Lecture 21 5

'

&

$

%

The rules

A call to ld (or gcc for linking) has .o files and -lfoo options in

left-to-right order.

• State: “Set of needed functions not defined” initially empty.

• Action for .o file:

– Include code in result

– Remove from set any functions defined

– Add to set any functions used and not yet defined

• Action for .a file: For each .o in order

– If it defines one or more functions in set, do all 3 things we do

for a .o file.

– Else do nothing.

• At end, if set is empty create executable, else error.

Dan Grossman CSE303 Spring 2007, Lecture 21 6

'

&

$

%

Library gotchas

1. Position of -lfoo on command-line matters

• Only resolves references for “things to the left”

• So -lfoo typically put “on the right”

2. Cycles

• If two .o files in a .a need other other, you’ll have to link the

library in (at least) twice!

• If two .a files need each other, you might do -lfoo -lbar

-lfoo -lbar -lfoo ...

• (There are command-line options to do this for you, but not

the default.)

3. If you include math.h, then you’ll need -lm.

Dan Grossman CSE303 Spring 2007, Lecture 21 7

'

&

$

%

Another gotcha

4. No repeated function names

• 2 .o files in an executable can’t have (public) functions of the

same name.

• Can get burned by library functions you do not know exist, but

only if you need another function from the same .o file.

(Solution: 1 public function per file?!)

Dan Grossman CSE303 Spring 2007, Lecture 21 8

'

&

$

%

Beyond static linking

Static linking has disadvantages:

• More disk space (copy library portions for every application)

• More memory when programs are running (what if the O/S could

have different processes magically share code).

So we can link later :

• Shared libraries (link in when program starts executing). Saves

disk space. O/S can share actual memory behind your back

(if/because code is immutable).

• Dynamically linked/loaded libraries. Even later (while program is

running). Devil is in the details.

“DLL hell” – if the version of a library on a machine is not the one the

program was tested with...

Dan Grossman CSE303 Spring 2007, Lecture 21 9

'

&

$

%

Summary

Things like “standard libraries” “header files” “linkers” etc. are not

magic.

But since you rarely need fine-grained control, you easily forget how to

control typically-implicit things. (You don’t need to know any of this

until you need to. :))

There’s a huge difference between source code and compiled code (a

header file and an archive are quite different).

The linker includes files from archives using strange rules.

Dan Grossman CSE303 Spring 2007, Lecture 21 10

'

&

$

%

Concurrency

Computation where “multiple things happen at the same time” is

inherently more complicated than sequential computation.

• Entirely new kinds of bugs and obligations

Two forms of concurrency:

• time-slicing : only one computation at a time but pre-empt to

provide responsiveness or mask I/O latency.

• true parallelism: more than one CPU (e.g., the lab machines have

two, the attu machines have 4, ...)

No problem unless the different computations need to communicate or

use the same resources.

Dan Grossman CSE303 Spring 2007, Lecture 21 11

'

&

$

%

Example: Processes

The O/S runs multiple processes “at once”.

Why? (Convenience, efficient use of resources, performance)

No problem: keep their address-spaces separate.

But they do communicate/share via files (and pipes).

Things can go wrong, e.g., a race condition:

echo "hi" > someFile

foo=‘cat someFile‘

assume foo holds the string hi??

The O/S provides synchronization mechanisms to avoid this

• See CSE451; we will focus on intraprocess concurrency.

Dan Grossman CSE303 Spring 2007, Lecture 21 12

'

&

$

%

The Old Story

We said a running Java or C program had code, a heap, global

variables, a stack, and “what is executing right now” (in assembly, a

program counter).

C, Java support parallelism similarly (other languages can be different):

• One pile of code, global variables, and heap.

• Multiple “stack + program counter”s — called threads

• Threads can be pre-empted whenever by a scheduler

• Threads can communicate (or mess each other up) via shared

memory.

• Various synchronization mechanisms control what thread

interleavings are possible.

– “Do not do your thing until I am done with my thing”

Dan Grossman CSE303 Spring 2007, Lecture 21 13

'

&

$

%

Basics

C: The POSIX Threads (pthreads) library

• #include <pthread.h>

• Link with -lpthread

• pthread_create takes a function pointer and an argument for it;

runs it as a separate thread.

• Many types, functions, and macros for threads, locks, etc.

Java: Built into the language

• Subclass java.lang.Thread overriding run

• Create a Thread object and call its start method

• Any object can “be synchronized on” (later)

See code examples...

Dan Grossman CSE303 Spring 2007, Lecture 21 14

'

&

$

%

Why do this?

• Convenient structure of code

– Example: 2 threads using information computed by the other

– Example: Failure-isolation – each “file request” in its own

thread so if a problem just “kill that request”.

– Example: Fairness – one slow computation only takes some of

the CPU time without your own complicated timer code.

Avoids starvation.

• Performance

– Run other threads while one is reading/writing to disk (or

other slow thing that can happen in parallel)

– Use more than one CPU at the same time

∗ The way computers will get faster over the next 10 years

∗ So no parallelism means no faster.

Dan Grossman CSE303 Spring 2007, Lecture 21 15

