4 N

CSE 303:
Concepts and Tools for Software Development

Dan Grossman
Spring 2007
Lecture 18— Specifications; Profiling (gprof)

- /

Dan Grossman CSE303 Spring 2007, Lecture 18 1

/VVhere are We

~

e Talked about testing, but not what (partially) correct was

e Then another useful tool: a run-time profiler

— In particular, gprof

-

Dan Grossman CSE303 Spring 2007, Lecture 18

/Specifying Code? \

We made a big assumption, that we know what the code is supposed
to do!

Oftentimes, a complete specification is at least as difficult as writing
the code. But:

e It's still worth thinking about.
e Partial specifications are better than none.

e Checking specificatins (at compile-time and/or run-time) is great
for finding bugs early and “assigning blame”.

- /

Dan Grossman CSE303 Spring 2007, Lecture 18 3

/Full Specification \

Often tractable for very simple stuff: “Take an int @ and return O iff

there exists ints y and z such that y * z == x (where x,y,z > 0
and y,z < x)."
What about sorting a doubly-linked list?

e Precondition: Can input be NULL? Can any prev and next fields

be NULL? Must it be a cycle or is “balloon” okay?

e Postcondition: Sorted (how to specify?) — and a permutation of

the input (no missing or new elements).

And there's often more than “pre” and “post” — time/space overhead,
other effects (such as printing), things that may happen in parallel.

Specs should guide programming and testing! Should be declarative
\i‘what” not “how”) to decouple implementation and use. /

Dan Grossman CSE303 Spring 2007, Lecture 18 4

/Pre/post and invariant \

Pre- and post-conditions apply to any statement, not just functions

e What is assumed before and guaranteed after

Because a loop “calls itself” its body's post-condition better imply the

loop’s precondition.
e A loop invariant

Example: find max (next slide)

- /

Dan Grossman CSE303 Spring 2007, Lecture 18 5

/Pre/post and invariant \

// pre: arr has length len; len >= 1

int max = arr[0];
int i=1;
while(i<len) {
if (arr[i] > max)
max = arrl[i];
++1;
+
// post: max >= all arr elements

loop-invariant: For all j<i, max>=arr[j].

e to show it holds after the loop body, must assume it holds before

loop body

\\o loop-invariant plus ! (i<len) after body, enough to show post /

Dan Grossman CSE303 Spring 2007, Lecture 18 6

/Partial Specifications \

The difficulty of full specs need not mean abandon all hope.

Useful partial specs:
e Can args be NULL?
e Can args alias?
e Are stack pointers allowed? Dangling pointers?
e Are cycles in data structures allowed?
e What is the minimum/maximum length of an array?
o ...

Guides callers, callees, and testers.

- /

Dan Grossman CSE303 Spring 2007, Lecture 18 7

/Beyond testing \

Specs are useful for more than “things to think about while coding”

and testing and comments.

Sometimes you can check them dynamically, e.g., with assertions (all

examples true for C and Java)
e Easy: argument not NULL
e Harder but doable: list not cyclic

e Impossible: Does the caller have other pointers to this object?

- /

Dan Grossman CSE303 Spring 2007, Lecture 18 8

/assert in C

In C:

#include <assert.h>
void f(int *x, intx*xy) {
assert (x!=NULL) ;

assert (x!=y) ;

else evaluate and exit with file/line number if zero.

-

e A macro; ignore argument if NDEBUG defined at time of #include,

/

Dan Grossman CSE303 Spring 2007, Lecture 18

/assert in Java \

In Java (as of version 1.4):

void f(Foo x, Foo y) {
assert x != null;

assert x !=y : "args to f should not be pointer-equal';

t
e By default, ignored.

e At program-start, use command-line options to specify which
packages' assertions are enabled.

- /

Dan Grossman CSE303 Spring 2007, Lecture 18 10

/assert style \

Many oversimply say “always” check everything you can. But:

e Often not on “private” functions (caller already checked)
e Unnecessary if checked statically
“Disabled” in released code because:
e executing them takes time
e failures are not fixable by users anyway
e assertions themselves could have bugs/vulnerabilities
Others say:

e Should leave enabled; corrupting data on real runs is worse than
when debugging

- /

Dan Grossman CSE303 Spring 2007, Lecture 18 11

/Static checking \

A stronger type system or other code-analysis tool might take a

program and ensure

e Plusses: earlier detection (“coverage” without running program),

faster code

e Minus: Potential “false positives” (spec couldn’t ever actually be
violated, but tool thinks so)

Deep CSE322 fact: Every code-analysis tool proving a non-trivial fact
has either false positives (unwarranted warning) or false negatives
(missed bug) or both.

Deep real-world fact: That doesn’'t make them unuseful.

- /

Dan Grossman CSE303 Spring 2007, Lecture 18 12

/Profilers

~

A profiler monitors and reports (performance) information about a

program execution.

They are useful for “debugging correct programs” by learning where
programs consume most time and/or space.

“90/10 rule of programs” (and often worse for new programs) — a
profiler helps you “find the 10".

But: The tool can be misused and misleading.

-

Dan Grossman CSE303 Spring 2007, Lecture 18 13

/VVhat profilers tell you \

Different profilers profile different things.

gprof, a profiler for code produced by gcc is widely available and
pretty typical:

e (all counts: # of times each function a calls each function b

— And the simpler fact: # of times a was called

e Time samples: # of times the program was executing a when
“the profiler woke up to check where the program was" .

Neither is quite what you want (as we'll see later), but they're
semi-easy and semi-quick to do:

e (all counts: Add code to every function call to update a table
indexed by function pairs.

e Time samples: Use the processor’s timer; wake up and see where

\\ the program is. /

Dan Grossman CSE303 Spring 2007, Lecture 18 14

/Using gprof

-

e Compile with -pg on the right.
— When you create the .o (for call counts)

— When you create the executable (for time samples)
e Run the program (creates (overwrites) gmon.out)
e Run gprof (on gmon.out) to get human-readable results.

e Read the results (takes a little getting used to).

Dan Grossman CSE303 Spring 2007, Lecture 18

15

