
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Dan Grossman

Spring 2007

Lecture 16— gdb continued; Testing

Dan Grossman CSE303 Spring 2007, Lecture 16 1



'

&

$

%

Where are We

• Midterm behind us

• In the middle of debugging a sample file with gdb

– To learn general features of breakpoint-debugging

– To learn specifics of gdb

– To learn general debugging “survival skills” (don’t panic)

• Friday: Version-control guest lecture Prof. Magda Balazinska

• Homework 5: Individual assignment; Groups of 3 per email

• Some very basic “software-engineering” topics in the midst of

tools (take 403)

– Today: testing (how, why, some terms)

– Monday: (partial) specification

Dan Grossman CSE303 Spring 2007, Lecture 16 2



'

&

$

%

gdb review

• For examining program state while a program is stopped or after it

crashes

– Move around the call stack, print variables, follow pointers,

compare addresses, ...

– Stepping, nexting, finishing, continuing, breaking

∗ Know what these do, how they work, why they’re helpful

∗ See the manual to remember and learn fancier features

– Debuggers exist for many languages/compilers (e.g., jdb on

attu for Java).

– Must remember some gdb specifics (e.g., compile with -g).

• Quick replay of our sample file and what we have fixed so far.

Dan Grossman CSE303 Spring 2007, Lecture 16 3



'

&

$

%

A few tricks

Everyone develops their own “debugging tricks”; some I used here:

• Printing pointer values to see how big objects were.

• Always checking why a seg-fault happened (infinite stack and

array-overflow very different)

• “Staring at code” even if it does not crash

• Printing array contents (especially last elements)

• ...

Like any tool, takes extra time at first but designed to save you time in

the long run

• Education is an investment.

Dan Grossman CSE303 Spring 2007, Lecture 16 4



'

&

$

%

Testing 1, 2, 3

• Role of testing and its plusses/minuses

• Unit testing or “testing in the small”

• Stubs, or “cutting off the rest of the world” (which might not

exist yet)

Important for homework 5:

• You write the tests; they are a significant part of the grade.

• You do not have a “whole application” to run otherwise.

Dan Grossman CSE303 Spring 2007, Lecture 16 5



'

&

$

%

A little theory

• Motto (Hunt and Thomas): “Test your software or your users will”

• Testing is very limited and difficult:

– Small number of inputs

– Small number of calling contexts, environments, compilers, ...

– Small amount of observable output

– Requires more things to get right, e.g., test code

• Standard coverage metrics (statement, branch, path) are useful

but only emphasize how limited it is.

Dan Grossman CSE303 Spring 2007, Lecture 16 6



'

&

$

%

3 coverage metrics

int f(int a, int b) {

int ans = 0;

if(a)

ans += a;

if(b)

ans += b;

return ans;

}

Statement coverage: f(1,1) sufficient

Branch coverage: f(1,1) and f(0,0) sufficient

Path coverage: f(0,0), f(1,0), f(0,1), f(1,1) sufficient

But even the example path-coverage test suite suggests f is a correct

“or” function for C; it is not.

Dan Grossman CSE303 Spring 2007, Lecture 16 7



'

&

$

%

Colored boxes

“black-box” vs. “white-box”

• black-box: test a unit without looking at its implementation

– Pros: don’t make same mistakes, think in terms of interface,

independent validation

– Basic example: remember to try negative numbers

• white-box: test a unit with looking at its implementation

– Pros: can be more efficient, can find the implementation’s

corner cases

– Basic example: try loop boundaries, “special constants”

Dan Grossman CSE303 Spring 2007, Lecture 16 8



'

&

$

%

Stubs

• Unit testing (a small group of functions) vs. integration testing

(combining units) vs. system testing (the “whole thing” whatever

that means)

• How to test units (“code under test”) when the other code:

– may not exist

– may be buggy

– may be large and slow

• Answer: You provide a “fake implementation” of the other code

that “works well enough for the tests”.

– Fake implementation is as small as possible, so the functions

are often called “stubs”.

Dan Grossman CSE303 Spring 2007, Lecture 16 9



'

&

$

%

Stubbing techniques

Honestly something I’ve never been taught, but here are some tricks I

use:

• Instead of computing a function, use a small table of pre-encoded

answers

• Return wrong answers that won’t mess up what you’re testing

• Don’t do things (e.g., print) that won’t be missed

• Use a slower algorithm

• Use an implementation of fixed size (an array instead of a list?)

• ... other ideas?

Lecture-size example can be tough, but we can show the ideas with

the prime-number code.

Dan Grossman CSE303 Spring 2007, Lecture 16 10



'

&

$

%

Eating your vegetables

• Make tests:

– early

– easy to run (e.g., a make target with an automatic diff against

sample output)

– that test interesting and well-understood properties

– that are as well-written and documented as other code

• Write the tests first?

• Write much more code than the “assignment requires you turn-in”

• Manually or automatically compute test-inputs and right-answers?

• Write regression tests and run on each version to ensure bugs do

not creep in for stuff that “used to work”.

Dan Grossman CSE303 Spring 2007, Lecture 16 11



'

&

$

%

Testing – of what

Summary: Testing has some concepts worth knowing and using

• Coverage

• White-box vs. black-box

• Stubbing

But we made a big assumption, that we know what the code is

supposed to do!

Specification is a topic for next week.

Dan Grossman CSE303 Spring 2007, Lecture 16 12


