
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Dan Grossman

Spring 2007

Lecture 13— C: post-overview, function pointers; Makefiles

Dan Grossman CSE303 Spring 2007, Lecture 13 1



'

&

$

%

Where are We

Today:

• Midterm info

• Top-down view of C

• Function pointers

• The make program (not C-specific)

Later:

• Using function pointers more like objects

Dan Grossman CSE303 Spring 2007, Lecture 13 2



'

&

$

%

Midterm info

• Next Monday, in class

• Up through Makefiles (part of Wednesday)

• Closed book/notes except one side of 8.5x11in sheet of paper

• Old exams posted, but:

– Makefiles was on the final (example questions copied over)

– Spring 05 class used tcsh instead of bash

– Of course, I can ask different kinds of questions/topics

Dan Grossman CSE303 Spring 2007, Lecture 13 3



'

&

$

%

Top-down post-overview

Now that we have seen most of C, let’s summarize/organize:

• Preprocessing (text replacement; common conventions)

– #include for declarations defined elsewhere

– #ifdef for conditional compilation

– #define for token-based textual substitution

• Compiling (type-checking and code-generating)

– A sequence of declarations

– Each C file becomes a .o file

• Linking (more later)

– Take .o and .a files and make a program

– libc.a in by default, has printf, malloc, ...

• Executing (next slide)

Dan Grossman CSE303 Spring 2007, Lecture 13 4



'

&

$

%

Execution

• O/S maintains the “big array” address-space illusion

• Execution starts at main

• Each stack-frame has space for arguments, locals, and

return-address (last one shouldn’t be visible to you)

• Library manages the heap via malloc/free

Dan Grossman CSE303 Spring 2007, Lecture 13 5



'

&

$

%

C, the language

• A file is a sequence of declarations:

– Global variables (t x; or t x = e;)

– struct (and union and enum) definitions

– Function prototypes (t f(t1,...,tn);)

– Function definitions

– typedefs

• A function body is a statement

– Statements are much like in Java (+ goto, –

exception-handling, ints for bools, ...)

– Local declarations have local scope (stack space).

• Left-expressions (locations) and right-expressions (values,

including pointers-to-locations)

– * for pointer dereference, & for address-of, . for field access

Dan Grossman CSE303 Spring 2007, Lecture 13 6



'

&

$

%

C language continued

“Convenient” expression forms:

• e->f means (*e).f

• e1[e2] means *(e1 + e2)

– But + for pointer arithmetic takes the size of the pointed to

element into account!

– That is, if e1 has type t* and e2 has type int, then , then

(e1 + c) == (((int)e1) + (sizeof(t) * c))

– The compiler “does the sizeof for you” – don’t double-do it!

“Size is exposed”: In Java, “(just about) everything is 32 bits”. In C,

pointers are usually the same size as other pointers, but not everything

is a pointer.

New side point: padding, alignment may mean structs are “bigger

than expected”

Dan Grossman CSE303 Spring 2007, Lecture 13 7



'

&

$

%

C is unsafe

The following is allowed to do anything to your program (delete files,

launch viruses, silently turn a 3 into a 2, ...)

array-bounds violation (bad pointer arithmetic), dangling-pointer

dereferences (including double-frees), dereferencing NULL, using

results of wrong casts, using contents of uninitialized locations, linking

errors (inconsistent assumptions), ...

Pointer casts are not checked (no secret fields at run-time; all bits look

the same)

Often crashing is a “good thing” compared to continuing silently with

meaningless data.

Dan Grossman CSE303 Spring 2007, Lecture 13 8



'

&

$

%

Now

C is a pretty small language, but we still skipped lots of features.

For now, one idiom (returning error codes) and one useful feature

(function pointers).

Dan Grossman CSE303 Spring 2007, Lecture 13 9



'

&

$

%

Error codes

Without exceptions, how can a callee indicate it could not do its job?

• Through the return value; caller must remember to check

Examples:

• fopen may return NULL

– f=fopen("someFile","r"); if(!f) ...

• scanf returns number of matched arguments

– cnt=scanf("%d:%d:%d",&h,&m,&s); if(cnt!=3) ...

• Often assign “real results” through pointer-arguments and result

is 0 for success and other values for errors (like in bash)

– if(!someCall(&realAns,arg1,args)) ...

Dan Grossman CSE303 Spring 2007, Lecture 13 10



'

&

$

%

Function pointers

“Pointers to code” are almost as useful as “pointers to data”.

(But the syntax is more painful.)

(Somewhat silly) example:

void app_arr(int len, int * arr, int (*f)(int)) {

for(; len > 0; --len)

arr[len-1] = (*f)(arr[len-1]);

}

int twoX(int i) { return 2*i; }

int sq(int i) { return i*i; }

void twoXarr(int len, int* arr) { app_arr(len,arr,&twoX); }

void sq_arr(int len, int* arr) { app_arr(len,arr,&sq); }

CSE 341 spends a week on why function pointers are so useful; today

is mostly just how in C.

Dan Grossman CSE303 Spring 2007, Lecture 13 11



'

&

$

%

Function pointers, cont’d

Key computer-science idea: You can pass what code to execute as an

argument, just like you pass what data to process as an argument.

Java: An object is (a pointer to) code and data, so you’re doing both

all the time.

// Java

interface I { int m(int i); }

void f(int arr[], I obj) {

for(int len=arr.length; len > 0; --len)

arr[len-1] = obj.m(arr[len-1]);

}

The m method of an I can have access to data (in fields).

C separates the concepts of code, data, and pointers.

• Another day: The “code has its own data” idiom in C

(hint: casts to/from void*).

Dan Grossman CSE303 Spring 2007, Lecture 13 12



'

&

$

%

C function-pointer syntax

C syntax: painful and confusing. Rough idea: The compiler “knows”

what is code and what is a pointer to code, so you can write less than

we did on the last slide:

arr[len-1] = (*f)(arr[len-1]);

→ arr[len-1] = f(arr[len-1]);

app_arr(len,arr,&twoX);

→ app_arr(len,arr,twoX);

For types, let’s pretend you always have to write the “pointer to code”

part (i.e., t0 (*)(t1,t2,...,tn)) and for declarations the variable

or field name goes after the *.

Sigh.

Dan Grossman CSE303 Spring 2007, Lecture 13 13



'

&

$

%

Onto tools

The language-implementation (preprocessor, compiler, linker,

standard-library) is hardly the only useful thing for developing software.

The rest of the course:

• Tools (recompilation managers, version control, debuggers,

profilers)

• Software-engineering issues

• A taste of C++

• Concurrency

• Societal implications

Dan Grossman CSE303 Spring 2007, Lecture 13 14



'

&

$

%

make

make is a classic program for controlling what gets (re)compiled and

how. Many other such programs exist (e.g., ant, “projects” in IDEs,

...)

make has tons of fancy features, but only two basic ideas:

1. Scripts for executing commands

2. Dependencies for avoiding unnecessary work

To avoid “just teaching make features” (boring and narrow), let’s

focus more on the concepts...

Dan Grossman CSE303 Spring 2007, Lecture 13 15



'

&

$

%

Build scripting

Programmers spend a lot of time “building” (creating programs from

source code)

• Programs they write

• Programs other people write

Programmers automate repetitive tasks. Trivial example:

gcc -Wall -g -o myprog foo.c bar.c baz.c

If you:

• Retype this every time: “shame, shame”

• Use up-arrow or history: “shame” (retype after logout)

• Have an alias or bash script: “good-thinkin”

• Have a Makefile: you’re ahead of us

Dan Grossman CSE303 Spring 2007, Lecture 13 16



'

&

$

%

“Real” build processes

On larger projects, you can’t or don’t want to have one big (set of)

command(s) that redoes everything every time you change anything.

1. If gcc didn’t combine steps behind your back, you could need to

preprocess and compile each file, then call the linker.

2. If another program (e.g., sed) created some C files, you would

need an “earlier” step.

3. If you have other outputs for the same source files (e.g.,

javadoc), it’s unpleasant to type the source files multiple times.

4. If you want to distribute source code to be built by other users.

5. If you have 105 to 107 lines of source code, you don’t want to

recompile them all every time you change something.

A simple script handles 1–4 (use a variable for the filenames for 3), but

5 is trickier.

Dan Grossman CSE303 Spring 2007, Lecture 13 17



'

&

$

%

Recompilation management

The “theory” behind avoiding unnecessary compilation is a

“dependency dag”:

• To create a target t, you need sources s1,s2,...,sn and a

command c (that directly or indirectly uses the sources)

• If t is newer than every source (file-modification times), assume

there is no reason to rebuild it.

• Recursive building: If some source si is itself a target for some

other sources, see if it needs to be rebuilt. Etc.

• Cycles “make no sense”

Dan Grossman CSE303 Spring 2007, Lecture 13 18



'

&

$

%

Theory applied to C

Another whole lecture on linking is in our future, but here is what you

need to know today for C:

• Compiling a .c creates a .o and depends on all included files

(recursively/transitively).

• Creating an executable (“linking”) depends on .o files.

• So if one .c file changes, just need to recreate one .o file and

relink.

• If a header-file changes, may need to rebuild more.

• Of course, this is only the simplest situation.

Dan Grossman CSE303 Spring 2007, Lecture 13 19



'

&

$

%

An algorithm

What would a program (e.g., a shell script) that did this for you look

like? It would take:

• a bunch of triples: target, sources, command(s)

• a “current target to build”

It would compute what commands needed to be executed, in what

order, and do it. (It would detect cycles and give an error.)

This is exactly what programs like make, ant, and things integrated

into IDEs do!

Dan Grossman CSE303 Spring 2007, Lecture 13 20



'

&

$

%

make basics
The “triples” are typed into a “makefile” like this:

target: sources

command
Example:

foo.o: foo.c foo.h bar.h

gcc -Wall -o foo.o -c foo.c

Syntax gotchas:

• The colon after the target is required.

• Command lines must start with a TAB NOT SPACES

• You can actually have multiple commands (executed in order); if

one command spans lines you must end the previous line with \.

• Which shell-language interprets the commands? (Typically bash,

to be sure set the SHELL variable in your makefile.)

Dan Grossman CSE303 Spring 2007, Lecture 13 21



'

&

$

%

Using make

At the prompt:

prompt% make -f nameOfMakefile aTarget

Defaults:

• If no -f specified, use a file named Makefile.

• If not target specified, use the first one in the file.

Together: I can download a tarball, extract it, type make (four

characters) and everything should work.

Actually, there’s typically a “configure” step too, for finding things like

“where is the compiler” that generates the Makefile (but we won’t

get into that).

Dan Grossman CSE303 Spring 2007, Lecture 13 22



'

&

$

%

Basics Summary

So far, enough for homework 4 and basic use.

• A tool that combines scripting with dependency analysis to avoid

unnecessary recompilation.

• Not language or tool-specific: just based on file-modification times

and shell-commands.

But there’s so much more you want to do so that your Makefiles are:

• Short and modular

• Easy to reuse (with different flags, platforms, etc.)

• Useful for many tasks

• Automatically maintained with respect to dependencies.

Also, reading others’ makefiles can be tough because of all the

features: see info make or entire books.

Dan Grossman CSE303 Spring 2007, Lecture 13 23


