
CSE 303, Spring 2007, Assignment 5B
Due: Monday 14 May, 9:00AM

Last updated: April 30

You will implement a “warehouse model” and unit tests for it. Other group members will independently
develop a “unique-identifier data structure” and an “order-filling algorithm.” The sample warehouse.c file
is about 120 lines (this does not include other files). (Though the longest of the 3 assignments, the code has
much easier algorithms.)

Requirements:

• Put your code in two files, warehouse.c and warehouse test.c. Both should include warehouse.h,
which you should write. Write an appropriate Makefile.

• warehouse.h (provided) should have just these prototypes plus typical header-file stuff:

#include "identifier.h" // also provided
struct Product;
struct Part;
struct Warehouse;

struct Warehouse * new_warehouse();
struct Part * add_part(struct Warehouse*, char*);
struct Product * add_product(struct Warehouse*, char*);
struct Part * get_part(struct Warehouse*, char*);
struct Product * get_product(struct Warehouse*, char*);
void add_part_to_product(struct Product*, struct Part*);
int product_count(struct Warehouse*);
int part_count(struct Warehouse*);
void receive_parts(struct Part*, int);
int sell_product(struct Product*);

• warehouse.c will use the declarations in identifier.h, so you will need to write stub definitions.

• In warehouse.c, define 5 structs (including two linked-list types) such that:

– A Part has a pointer to an ID and an int quantity (the number currently available in the ware-
house).

– A Product has a pointer to an ID and a linked-list of Parts (those necessary to make the product;
the same Part may be in the list multiple times if multiple are needed to make the product).

– A Warehouse has two pointers to IDSpaces (one for Product IDs and one for Part IDs), a linked-
list of all products, and a linked-list of all parts.

• new warehouse returns a pointer to a new-heap allocated warehouse with no parts or products.

• If add part is given a part-name that already exists in the Warehouse, it returns the struct Part*
already in the Warehouse. (Hint: Use another function.) Else it creates a new Part, adds it to the list
of all parts, and returns it. (Hint: You need to call malloc twice.) Use string to id and the IDSpace
for Parts to get an ID. Intiailize the quantity to 0.

• add product is like add part except it returns a struct Product*, uses the IDSpace for Products,
adds to the list of all products, and has an initial part-list of NULL.

• get part returns the struct Part* in the Warehouse with the part-name passed as an argument
(use string to id to get the right ID and then compare IDs with pointer-equality ; it is up to the ID
implementation to ensure this is correct). If no ID matches, return NULL.

1



• get product is like get part except it returns a struct Product*.

• add part to product adds its second argument to the part-list of the first argument. (We assume
both the Product and the Part are already in the same Warehouse.)

• product count returns how many Products are in the warehouse.

• part count returns how many Parts are in the warehouse.

• receive parts increases the quantity of the Part it is passed by the amount of the int it is passed.

• sell product updates the parts inventory for selling the Product. That is, for each Part in the part-
list, we decrement its quantity. (If a Part appears multiple times, its quantity will decrement multiple
times.) The return value is 1 if no Part’s quantity becomes negative and 0 if some Part’s quantity
becomes negative.

Advice/Hints:

• Understand how all the pointers interact before you start coding. Be sure your struct definitions are
right.

• Use the return value of sell product for testing.

• You may also write a print inventory function in warehouse.c to help with testing (and you will
need it for homework 6 anyway).

• Some of the functions are very easy.

• Do not fret that you are not required to write memory-deallocation functions; this is to keep the
assignment smaller.

Assessment and turn-in:
Your solutions should be:

• Correct C code that compiles without warnings using gcc -Wall and does not have space leaks

• In good style, including indentation and line breaks

• Of reasonable size

Your test code should provide good coverage.

Use turnin for course cse303 and project hw5. If you use late-days, use project hw5late1 (for 1 late day) or
hw5late2 (for 2).

2


