
CSE 303, Spring 2007, Assignment 4
Due: Friday 4 May, 9:00AM

Last updated: April 23

(As usual, line counts provide a rough sense of how much work is required; they are not requirements.)

Overview: You will complete a Boggle program that is more useful than the one in homework 3. The user
inputs commands that make the program do things like create a new grid, add a word to the found-words
(if it is in the grid), print the words found so far in the current grid, print the current grid, etc. Instead of
reading grids from a file, grids are filled in by choosing letters randomly, but using probabilities that favor
common letters. These probabilites are computed by another program (written by the instructor; called
probability maker) by reading a (presumably) representative text file.
Much of the code has been written for you and you need not add any files. What is left to do is:

• Write a Makefile. This is interesting because probability maker creates a C file used by the boggle
program (which you are completing).

• Change a function in grid utilities.c to uses the correct probabilities to choose a letter for a grid
position.

• Write most of string set array.c, which implements a set of strings using “extensible arrays” (ex-
plained below).

• Write most of boggle main.c to process the user’s commands (using the grid-utilities and the string-set
provided by other files).

The code provided to you (on the course web-site) compiles but does not yet “do anything.” The file
buildScript does everything necessary to compile boggle (including compile and run probability maker),
so it is not necessary to do problem (1) first.

Problems:

1. Complete the Makefile for this project. The provided file needs 6–7 more targets, 2 of which are for
the programs boggle and probability maker. These programs should be built out of only the .o files
they need. As usual:

• A .o should be remade if the corresponding .c file or any of the non-library headers it uses change.

• A program should be remade if any of its .o files change.

In addition, the file that probability maker creates (letter probabilities.c) should be remade if
the probability maker program changes or /usr/share/dict/words changes. (probability maker
takes one file and produces a C file defining an array described in the next problem. We choose to pass
the Linux words file, so if this file changes, the created C file will probably change too.)

As noted above, it is not necessary to do this problem first.

2. Change the implementation of get weighted letter in grid utilities.c to use the array
letter probabilities as follows. The array has 26 entries and the number in position i is the fraction
of the time that we want to pick one of the first i+1 letters of the alphabet. (So, as an extreme example,
the last entry is 1.0 because we always pick some letter.) The caller to get weighted letter passes
a (pseudo)random number evenly distributed between 0 and 1 (you need not understand how this is
done). So all you have to do is return the ith letter of the alphabet when the argument is between the
(i− 1)th and ith entries in the array. Sample solution is 7 lines.

3. In string set array.c, define the functions declared in string set.h using the provided definition
of struct StringSet. Sample solution is 44 lines (4 blank). These functions should behave as follows:

• new string set heap-allocates a new set with 0 elements but with an array large enough to hold
INITIAL SET SIZE elements.

1



• string set member returns 0 unless one of the first argument’s elements is a string equal to the
second argument. Use the strcmp library function.

• string set add does nothing if the second argument is already a member of the first. Else it
adds a copy of the second argument (use the strdup library function) to the set. If there is no
room in the array, first make a new array that is twice as large, copy over all the pointers to the
string, and (to avoid leaking space), deallocate the too-small array.

• string set foreach takes a function-pointer and calls the pointed-to-function on each string in
the first argument (so if there are n strings, it calls the function n times).

• free string set deallocates all the space used for a set, including the strings, the array, and the
struct. (It is okay to deallocate the strings because string set add uses copies; see above.)

4. Implement run boggle in boggle main.c to behave as follows. Sample solution is 70 lines including
one other very short function. You should use several other functions provided to you.

(a) First, make a grid of size INITIAL GRID SIZE and an empty set of strings for “words found so
far.” Print the possible commands and this initial grid.

(b) Then enter an infinite loop that repeatedly reads a line from stdin. Use the getline function.
(See the man page; the probability maker code also has an example use.) If the line has only
a \n immediately read another line (i.e., do nothing), else there are different cases depending on
the first letter of the line:

(c) If the first letter is ’p’, print the current grid.

(d) If the first letter is ’a’, there should be one space after the ’a’ and then one or more English
letters. If not, print an appropriate message. Else convert the word to all lower-case and see if the
result is in the current grid. If not, print an appropriate message. Else see if the word is already
in the “words found so far.” If so, print an appropriate message. Else add the word to the “words
found so far.”

(e) If the first letter is ’n’, there should be one space after the ’n’ and then the rest of the line
should be something the standard-library function atoi can convert to a positive number. If not,
print an appropriate message. Else, (1) replace the current grid with a new grid with the number
being the size, (2) replace the “words found so far” with a new empty set, and (3) print the new
current grid. Do not leak space.

(f) If the first letter is ’w’, print the “words found so far,” one on a line. Hint: Use string set foreach,
passing it a function you write that prints a string.

(g) If the first letter is ’q’, return from run boggle, after preventing all space leaks.

(h) If the first letter is ’?’, print the possible commands.

(i) For any other first letter, print a message like: bad command; enter ’?’ for usage.

5. Extra Credit: Do one or more of the following.

(a) Change probability maker and the grid-printing code so that qu is treated as one-letter (ignore
any q that is not followed by a u). In printing a grid, any column that has a qu should put an
extra space after all other letters in the column so that subsequent columns still line up.

(b) In string set list.c, implement string-sets using linked lists. Update the Makefile to choose
between the two implementations depending on whether the make variable USE_LISTS is set.

(c) Add a t command that takes a number and after that many seconds have elapsed no more words
can be added until a new grid is created. Change the a command to report if time has expired.
After the t command has been used once on the current grid, any subsequent t commands do
not need a number and they print how many seconds are remaining.

(d) Change probability maker to have an option -a to, if letter probabilities.c already exists,
add the file’s contents to the results rather than replacing the results. (Hint: Put the old total
number of letters in a C comment.) Your solution should work for up to 264 total letters.

2



Assessment: Your solutions should be:

• Correct C programs that compile without warnings using gcc -Wall and do not leak memory.

• In good style, including indentation and line breaks

• Of reasonable size

Turn-in: Use the turnin command (man turnin) for course cse303 and project hw4. Given the large
number of files, it is easiest to run turn-in on a whole directory after running make clean and removing any
temporary files. For example:

turnin -ccse303 -phw4 myhw4_code

If you use one late-day (see the syllabus) use the project hw4late1 instead of hw4 and similarly hw4late2
for two late days. If you do the extra credit, turn in extra files as necessary and turn in a text file titled
extra credit that explains what extra credit you did.

3


