
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Hal Perkins

Autumn 2007

Lecture 24— Introduction to C++

CSE303 Autumn 2007, Lecture 24 1

'

&

$

%

C++

C++ is an enormous language:

• All of C

• Classes and objects (kind of like Java, some crucial differences)

• Many more little conveniences (I/O, new/delete, function

overloading, pass-by-reference, bigger standard library)

• Namespaces (kind of like Java packages)

• Stuff we won’t do: const, different kinds of casts, exceptions,

templates, multiple inheritance, ...

We will focus on a couple themes rather than just a “big bag of new

features to memorize”...

CSE303 Autumn 2007, Lecture 24 2

'

&

$

%

Our focus

OOP in a C-like language may help you understand C and Java better?

• We can put objects on the stack or the heap; an object is not a

pointer to an object

• Still have to manage memory manually

• Still lots of ways to HCBWKMSCOD (hopefully crash, but who

knows – might silently corrupt other data)

• Still distinguish header files from implementation files

• Allocation and initialization still separate concepts, but easier to

“construct” and “destruct”

• Programmer has more control on how method-calls work (different

defaults from Java)

CSE303 Autumn 2007, Lecture 24 3

'

&

$

%

Hello World

#include <iostream>

int main() {

// Use standard output stream cout

// and operator << to send "Hello World"

// and an end line to stdout

std::cout << "Hello World" << std::endl;

return 0;

}

Differences from C: “new-style” headers (no .h), namespace access

(::), I/O via stream operators, ...

Differences from Java: not everything is in a class, any code can go in

any file, ...

CSE303 Autumn 2007, Lecture 24 4

'

&

$

%

Compiling

Need a different compiler than for C; use g++ on attu. Example:

g++ -Wall -o hello hello.cc

The .cc extension is a convention (just like .c for C), but less

universal (also see .cpp, .cxx, .C).

Uses the C preprocessor (no change there).

Now: A few “niceties” before our real focus (classes and objects).

CSE303 Autumn 2007, Lecture 24 5

'

&

$

%

I/O

Operator << takes a “ostream” and (various things) and outputs it;

returns the stream, which is why

std::cout << 3 << "hi" << f(x) << ’\n’; works

• Easier and safer than printf

Operator >> takes “istream” and (various things) and inputs into it.

• Easier and safer than scanf. Do not use pointers; e.g.,

int x; cin >> x;

Can “think of” >> and << as keywords, but they are not:

• Operator overloading redefines them for different pairs of types.

– In C they mean “left-shift” and “right-shift” (of bits);

undefined for non-numeric types.

• Lack of address-of for input done with call-by-reference (later).

CSE303 Autumn 2007, Lecture 24 6

'

&

$

%

Namespaces

In C, all non-static functions in the program need different names

• Even operating systems with tens of millions of lines.

Namespaces (cf. Java packages) let you group top-level names:

• namespace myspace { ... definitions ... }

• Of course, then different namespaces can have the same function

names and they are totally different functions.

• Can nest them

• Can reuse the same namespace in multiple places

– Pariticularly common: in the .h and the .cc

For example, the whole C++ standard library is in namespace std.

To use a function/variable/etc. in another namespace, do

thespace::someFun() (not . like in Java)

CSE303 Autumn 2007, Lecture 24 7

'

&

$

%

Using

To avoid having to write namespaces and :: constantly, use a using

declaration

Example:

#include <iostream>

using namespace std;

int main() {

cout << "Hello World" << endl;

return 0;

}

CSE303 Autumn 2007, Lecture 24 8

'

&

$

%

Onto OOP
Like Java:

• Fields vs. methods, static vs. instance, constructors

• Method overloading (functions, operators, and constructors too)

Not quite like Java:

• access-modifiers (e.g., private) syntax and default

• declaration separate from implementation (like C)

• funny constructor syntax, default parameters (e.g., ... = 0)

Nothing like Java:

• Objects vs. pointers to objects

• Destructors and copy-constructors

• virtual vs. non-virtual (to be discussed)

CSE303 Autumn 2007, Lecture 24 9

'

&

$

%

Stack vs. heap

Java: cannot stack-allocate an object (only a pointer to one).

C: can stack-allocate a struct, then initialize it.

C++: stack-allocate and call a constructor (where this is the object’s

address, as always)

• Property p1(10000);

Java: new Property(...) calls constructor, returns heap-allocated

pointer.

C: Use malloc and then initialized, must free exactly once later.

C++: Like Java, but can also do new int(42). Like C must

deallocate, but must use delete instead of free.

CSE303 Autumn 2007, Lecture 24 10

'

&

$

%

Destructors

An object’s destructor is called just before the space for it is reclaimed.

A common use: Reclaim space for heap-allocated things pointed to

(first calling their destructors).

• But not if there are other pointers to it (aliases)?!

Meaning of delete x: call the destructor of pointed-to heap object,

then reclaim space.

Destructors also get called for stack-objects (when they leave scope).

Advice: Always make destructors virtual (learn why soon)

CSE303 Autumn 2007, Lecture 24 11

'

&

$

%

Arrays

Create a heap-allocated array of objects: new A[10];

• Calls default (zero-argument) constructor for each element.

• Convenient if there’s a good default initialization.

Create a heap-allocated array of pointers to objects: new A*[10]

• More like Java (but not initialized?)

• As in C, new A() and new A[10] have type A*.

• new A* and new A*[10] both have type A**.

• Unlike C, to delete a non-array, you must write delete e

• Unlike C, to delete an array, you must write delete [] e

Else HYCSBWK – the deleter must know somehow what is an array.

CSE303 Autumn 2007, Lecture 24 12

'

&

$

%

Digression: Call-by-reference

In C, we know function arguments are copies

• But copying a pointer means you still point to the same

(uncopied) thing

Same in C++, but a “reference parameter” (the & character after it)

is different.

Callee writes: void f(int& x) { x = x + 1; }

Caller writes: f(y)

But it’s as though the caller wrote f(&y) and everywhere the callee

said x they really said *x.

So that little & has a big meaning.

CSE303 Autumn 2007, Lecture 24 13

'

&

$

%

Copy Constructors

In C, we know x=y or f(y) copies y (if a struct, then member-wise

copy).

Same in C++, unless a copy-constructor is defined, then do whatever

it says.

A copy-constructor by definition takes a reference parameter (else we’d

need to copy, but that’s what we’re defining) of the same type.

Let’s not talk about the const.

CSE303 Autumn 2007, Lecture 24 14

'

&

$

%

Now more OOP: Subclassing

In many ways, OOP is “all about” subclasses overriding methods.

• Often not what you want, but what makes OOP fundamentally

different from, say, functional programming (CSE341)

C++ gives you lots more options than Java with different defaults, so

it’s easy to scream “compiler bug” when you mean “I’m using the

wrong feature”...

Basic subclassing:

• class D : public C { ... }

• This is public inheritance; C++ has other kinds too (won’t cover)

– Differences affect visibility and issues when you have multiple

superclasses (won’t cover)

– So do not forget the public keyword

CSE303 Autumn 2007, Lecture 24 15

'

&

$

%

More on subclassing

• Not all classes have superclasses (unlike Java with Object)

• Terminology

– Java (and others): “superclass” and “subclass”

– C++ (and others): “base class” and “derived class”

• Our example code: House derives from Land which derives from

Property

• As in Java, can add fields/methods/constructors, and override

methods.

CSE303 Autumn 2007, Lecture 24 16

'

&

$

%

Construction and destruction

• Constructor of base class gets called before constructor of derived

class

– Default (zero-arg) constructor unless you specify a different

one after the : in the constructor.

• Destructor of base class gets called after destructor of derived

class

So constructors/destructors really extend rather than override, since

that is typically what you want.

• Java is the same

CSE303 Autumn 2007, Lecture 24 17

'

&

$

%

Method overriding, part 1

If a derived class defines a method with the same name and argument

types as one defined in the base class (perhaps because of an

ancestor), it overrides (i.e., replaces) rather than extends.

If you want to use the base-class code, you specify the base class when

making a method call.

• Like super in Java (no such keyword in C++ since there may be

multiple inheritance)

Warning: the title of this slide is part 1.

CSE303 Autumn 2007, Lecture 24 18

