
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Dan Grossman

Winter 2006

Lecture 22— Linking Wrap-up; Threads, concurrency

Dan Grossman CSE303 Winter 2006, Lecture 22 1

'

&

$

%

Archives
An archive is the “.o equivalent of a .jar file” (though history is the

other way around).

Create with ar program (lots of features, but fundamentally take .o

files and put them in, but order matters).

The semantics of passing ld an argument like -lfoo is complicated

and often not what you want:

• Look for what: file libfoo.a (ignoring shared libraries for now),

when: at link-time, where: defaults, environment variables

(LIBPATH ?) and the -L flags (analogous to -I).

• Go through the .o files in libfoo.a in order.

– If a .o defines a needed reference, include the .o.

– Including a .o may add more needed references.

– Continue.

Dan Grossman CSE303 Winter 2006, Lecture 22 2

'

&

$

%

The rules

A call to ld (or gcc for linking) has .o files and -lfoo options in

left-to-right order.

• State: “Set of needed functions not defined” initially empty.

• Action for .o file:

– Include code in result

– Remove from set any functions defined

– Add to set any functions used and not yet defined

• Action for .a file: For each .o in order

– If it defines one or more functions in set, do all 3 things we do

for a .o file.

– Else do nothing.

• At end, if set is empty create executable, else error.

Dan Grossman CSE303 Winter 2006, Lecture 22 3

'

&

$

%

Library gotchas

1. Position of -lfoo on command-line matters

• Only resolves references for “things to the left”

• So -lfoo typically put “on the right”

2. Cycles

• If two .o files in a .a need other other, you’ll have to link the

library in (at least) twice!

• If two .a files need each other, you might do -lfoo -lbar

-lfoo -lbar -lfoo ...

3. If you include math.h, then you’ll need -lm.

Dan Grossman CSE303 Winter 2006, Lecture 22 4

'

&

$

%

Another gotcha

4. No repeated function names

• 2 .o files in an executable can’t have (public) functions of the

same name.

• Can get burned by library functions you do not know exist, but

only if you need another function from the same .o file.

(Solution: 1 public function per file?!)

Dan Grossman CSE303 Winter 2006, Lecture 22 5

'

&

$

%

Beyond static linking

Static linking has disadvantages:

• More disk space (copy library portions for every application)

• More memory when programs are running (what if the O/S could

have different processes magically share code).

So we can link later :

• Shared libraries (link in when program starts executing). Saves

disk space. O/S can share actual memory behind your back

(if/because code is immutable).

• Dynamically linked/loaded libraries. Even later (while program is

running). Devil is in the details.

“DLL hell” – if the version of a library on a machine is not the one the

program was tested with...

Dan Grossman CSE303 Winter 2006, Lecture 22 6

'

&

$

%

Summary

Things like “standard libraries” “header files” “linkers” etc. are not

magic.

But since you rarely need fine-grained control, you easily forget how to

control typically-implicit things. (You don’t need to know any of this

until you need to. :))

There’s a huge difference between source code and compiled code (a

header file and an archive are quite different).

The linker includes files from archives using strange rules.

Dan Grossman CSE303 Winter 2006, Lecture 22 7

'

&

$

%

Our Old Model

So far, a process (a running program) has:

• a stack

• a heap

• code

• global variables

Other processes have a separate address space. The O/S takes turns

running processes on one or more processors.

Interprocess communication happens via the file system, pipes, and

things we don’t know about.

Dan Grossman CSE303 Winter 2006, Lecture 22 8

'

&

$

%

Inter-process races

Forgetting about other processes can lead to programming mistakes:

echo "hi" > someFile

foo=‘cat someFile‘

assume foo holds the string hi??

A race condition is when this might occur.

Processes sharing resources must synchronize; no time today to show

you how.

But enough about processes; we’ll focus on intra-process threads

instead and how you use locks in Java.

Dan Grossman CSE303 Winter 2006, Lecture 22 9

'

&

$

%

“Lightweight” Threads

One process can have multiple threads!

Each thread has its own stack.

A scheduler runs threads one-or-more at a time.

The difference from multiple processes is the threads share an address

space – same heap, same globals.

“Lightweight” because it’s easier for threads to communicate (just

read/write to shared data).

But easier to communicate means easier to mess each other up.

(Also there are tough implementation issues about where to put

multiple stacks.)

Dan Grossman CSE303 Winter 2006, Lecture 22 10

'

&

$

%

Shared Memory

Now races can happen if two threads could access the same memory

at the same time, and at least one access is a write.

class A { String s; }

class C {

private A a;

void m1() {

if(a != null) // "dangerous" race

a.s = "hi";

}

void m2() { a = null; }

...

}

If you naively try to code away races, you will just add other races!!!

Dan Grossman CSE303 Winter 2006, Lecture 22 11

'

&

$

%

Concurrency primitives

Different languages/libraries for multithreading provide different

features, but here are the basics you can expect these days:

• A way to create a new thread

– See the run method of Java’s Thread class.

• Locks (a way to acquire and release them).

– A lock is available or held by a thread.

– Acquiring a lock makes the acquiring thread hold it, but the

acquisition blocks (does not continue!) until the lock is

available.

– Releasing a lock makes the lock available.

– Advanced note: Java locks are reentrant: reacquisition doesn’t

block, instead increments a hidden counter that release

decrements...

Dan Grossman CSE303 Winter 2006, Lecture 22 12

'

&

$

%

Locks in Java

Java makes every object a lock and combines acquire/release into one

language construct:

synchronized (e) { s }

• Evaluate e to an object.

• “Acquire” the object (blocking until available).

• Execute s.

• Release the lock. The implementation of locks ensures no races on

acquiring and releasing.

Dan Grossman CSE303 Winter 2006, Lecture 22 13

'

&

$

%

Fixing our example

If a C object might have m1 and m2 called simultaneously, then both

must guard their access to a with the same lock.

class C {

private A a;

void m1() {

synchronized (this) {

if(a != null) // "dangerous" race

a.s = "hi";

}

}

void m2() { synchronized (this) { a = null; } }

}

Note: There is more convenient syntax for this.

Note: What if a is public and/or there are subclasses.

Dan Grossman CSE303 Winter 2006, Lecture 22 14

'

&

$

%

Rules of Thumb

Any one of the following are sufficient for avoiding races:

• Keep data thread-local (an object is reachable, or at least only

accessed by, one thread).

• Keep data read-only (do not assign to object fields after an

object’s constructor)

• Use locks consistently (all accesses to an object are made while

holding a particular lock)

These are tough invariants to get right, but that’s the price of

multithreaded programming today.

Dan Grossman CSE303 Winter 2006, Lecture 22 15

'

&

$

%

Deadlock

Object a;

Object b;

void m1() { void m2() {

synchronized a { synchronized b {

synchronized b { synchronized a {

... ...

}} }}

}

A cycle of threads waiting on locks means none will ever run again!

Avoidance: All code acquires locks in the same order (very hard to

do). Ad hoc: Don’t hold onto locks too long or while calling into

unknown code.

Dan Grossman CSE303 Winter 2006, Lecture 22 16

'

&

$

%

Creating threads

Java separates creating a thread (an object of type Thread) from

starting it (calling its run method).

• So subclass Thread and override run method.

• Share data via arguments passed to constructor.

C the language does not have threads, but there are libraries,

especially pthreads, which provide locks and thread-creation.

• pthread_create takes a function-pointer and an argument to

pass to it.

• Share data via the argument (like we did when studying function

pointers).

Dan Grossman CSE303 Winter 2006, Lecture 22 17

'

&

$

%

Summary

Multithreaded programming is harder:

• there are multiple stacks in one address space

• there are potential races and deadlocks

Locks are a useful concept: only one thread holds a lock at a time.

There are other useful concepts; see CSE451 or come talk to me.

Why have threads?

• Performance (multicore is coming!)

• Structure of certain code (e.g., event-handling)

• Robustness of certain code (e.g., thread-failure 6= program-failure)

Example you may have seen but which mostly hides threads: Java

EventListeners

Dan Grossman CSE303 Winter 2006, Lecture 22 18

