
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Dan Grossman

Winter 2006

Lecture 21— Linkers, Libraries, Archives, ...

Dan Grossman CSE303 Winter 2006, Lecture 21 1



'

&

$

%

Today

In compiling and running code, one constantly needs other files and

programs that find them.

Examples:

• C preprocessor #include

• C libraries (where is the code for printf and malloc)

• Java source files (referring to other source code)

• Java class files (referring to other compiled code)

Usually you’re happy with programs “automatically finding what you

need” so the complicated rules can be hidden.

Today we will demystify and make generalizations.

Dan Grossman CSE303 Winter 2006, Lecture 21 2



'

&

$

%

Common questions

1. What you are looking for?

2. When are you looking for it?

3. Where are you looking?

4. What problems do cycles cause?

5. How do you change the answers?

our old friends: files, function names, paths, environment variables,

command-line flags scripts, configuration files, ...

Dan Grossman CSE303 Winter 2006, Lecture 21 3



'

&

$

%

Previous example

cpp (invoked implicitly by gcc on files ending in .c).

What: files named “foo” when encountering #include <foo> or

#include "foo" (note .h is just a convention).

When: When the preprocessor is run (making x.i from x.c).

Where: “include path” current-directory, directories chosen when cpp

is installed (e.g., /usr/include), directories listed in INCLUDE shell

variable, directories listed via -I flags, ...

The rules on “what overrides what” exist, but tough to remember.

Can look at result to see “what really happened”.

Example: for nested #include, the original current-directory or the

header file’s current-directory?

Example: Why shouldn’t you run cpp on 1 machine and compile the

results on another?

Dan Grossman CSE303 Winter 2006, Lecture 21 4



'

&

$

%

javac is similar

If A.java defines class A to have a field of type B, how “does the

compiler know what B is”?

What: a file named B.class (probably the result of compiling

B.java).

When: When compiling a source file that uses the class B.

Where: “class path” current-directory, directories chosen when javac

was installed, directories listed in CLASSPATH shell variables, directories

listed via -classpath flags, ... (Note: Packages correspond to

subdirectories)

The rules on “what overrides what” exist, but tough to remember.

Dan Grossman CSE303 Winter 2006, Lecture 21 5



'

&

$

%

Source code cycles

What if two source files refer to each other?

• C: Can’t but don’t need to: Put declarations in header files and

include each header file at most once.

• Java: If B.class is not found, but B.java is, (implicitly) compile

B.java (potentially with information the compiler already has

about A).

Dan Grossman CSE303 Winter 2006, Lecture 21 6



'

&

$

%

IDEs

Fancier development environments provide help with “packages”,

“projects”, etc.

Fundamentally, the questions are the same and their are settings and

menu items for controlling your development process.

Dan Grossman CSE303 Winter 2006, Lecture 21 7



'

&

$

%

Compiled code

So far we have talked about finding source code to create compiled

code (either .o files for C or .class files for Java).

These files are not whole applications, so we have the same questions

for “finding the other code”.

The Java story is a bit simpler, so we will do it first.

Dan Grossman CSE303 Winter 2006, Lecture 21 8



'

&

$

%

Java class-loading and execution

Recall java A args runs class A’s static main method with args.

java is just a program that finds A.class and knows what to do

(interpretation and/or just-in-time compilation).

But it will probably have to find lots of other classfiles too.

Simple (untrue but doable) version: Recursively find all the class files

you need before starting execution:

• What: class files referred to

• When: start of execution

• Where: classpath, etc.

Disadvantages?

Dan Grossman CSE303 Winter 2006, Lecture 21 9



'

&

$

%

Java class-loading continued

Actually, the JVM is much lazier (technical word) about class-loading;

waiting until a class is actually used (technical definition) during

execution.

That is, the when is “later” and “more complicated”.

So is the where:

• jar files (lots of classes in one file, retrieved together)

• remote class files (applets with code over the web, etc.)

• different security settings for classes found different places

Why use a jar (“Java archive”) file:

• Keep classes that need each other together

• Faster/simpler remote retrieval

Dan Grossman CSE303 Winter 2006, Lecture 21 10



'

&

$

%

Object code is different

A .o file is not “runnable” – you have to actually link it with the

other code to make an executable.

Linking (ld, or called via gcc) is a “when” between compiling and

executing.

Again, gcc hides this from you (just -c or not -c), but it helps to

know what is going on.

First discuss static linking, which is mostly like the untrue version of

Java we sketched.

Dan Grossman CSE303 Winter 2006, Lecture 21 11



'

&

$

%

Linking

If a C file uses but does not define a function (or global variable) foo,

then the .o has “unresolved references”. Declarations don’t count;

only definitions.

The linker takes multiple .o files and “patches them” to include the

references. (It literally moves code and changes instructions like

function calls.)

An executable must have no unresolved references (you have seen this

error message).

What: Definitions of functions/variables

When: The linker creates an executable

Where: Other .o files on the command-line (and much more...)

Dan Grossman CSE303 Winter 2006, Lecture 21 12



'

&

$

%

More about where
The linker and O/S don’t know anything about main or the C library.

That’s why gcc “secretly” links in other things.

We can do it ourselves, but we would need to know a lot about how

the C library is organized. Get gcc to tell us:

• gcc -v -static hello.c

• Should be largely understandable by end of today.

• -static (stick with the simple “get all the code you need into

a.out story)

• the secret *.o files: (they do the stuff before main gets called,

which is why gcc gives errors about main not being defined).

• -lc: complicated story about finding the library (a.k.a. “archive”)

libc.a and including any files that provide still-unresolved

references.

Dan Grossman CSE303 Winter 2006, Lecture 21 13



'

&

$

%

Archives
An archive is the “.o equivalent of a .jar file” (though history is the

other way around).

Create with ar program (lots of features, but fundamentally take .o

files and put them in, but order matters).

The semantics of passing ld an argument like -lfoo is complicated

and often not what you want:

• Look for what: file libfoo.a (ignoring shared libraries for now),

when: at link-time, where: defaults, environment variables

(LIBPATH ?) and the -L flags (analogous to -I).

• Go through the .o files in libfoo.a in order.

– If a .o defines a needed reference, include the .o.

– Including a .o may add more needed references.

– Continue.

Dan Grossman CSE303 Winter 2006, Lecture 21 14


