
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Dan Grossman

Winter 2006

Lecture 17— Unit testing, stubs, specification, etc.

Dan Grossman CSE303 Winter 2006, Lecture 17 1



'

&

$

%

Where are We

• In the middle of software development tools

– “Done”: preprocessors, compilers, debuggers, profilers,

– “To do”: compilation-managers, version-control systems,

linkers, archive-generators

• Today: “software engineering” topics related to homework 5.

Dan Grossman CSE303 Winter 2006, Lecture 17 2



'

&

$

%

Testing 1, 2, 3

• Role of testing and its plusses/minuses

• Unit testing or “testing in the small”

• Stubs, or “cutting off the rest of the world” (which might not

exist yet)

Dan Grossman CSE303 Winter 2006, Lecture 17 3



'

&

$

%

A little theory

• Motto (Hunt and Thomas): “Test your software or your users will”

• Testing is very limited and difficult:

– Small number of inputs

– Small number of calling contexts, environments, compilers, ...

– Small amount of observable output

– Requires more things to get right, e.g., test code

• Standard coverage metrics (statement, branch, path) are useful

but only emphasize how limited it is.

Dan Grossman CSE303 Winter 2006, Lecture 17 4



'

&

$

%

Colored boxes

“black-box” vs. “white-box”

• black-box: test a unit without looking at its implementation

– Pros: don’t make same mistakes, think in terms of interface,

indepdent validation

– Basic example: remember to try negative numbers

• white-box: test a unit with looking at its implementation

– Pros: can be more efficient, can find the implementation’s

corner cases

– Basic example: try loop boundaries, “special constants”

Dan Grossman CSE303 Winter 2006, Lecture 17 5



'

&

$

%

Stubs

• Unit testing (a small group of functions) vs. integration testing

(combining units) vs. system testing (the “whole thing” whatever

that means)

• How to test units (“code under test”) when the other code:

– may not exist

– may be buggy

– may be large and slow

• Answer: You provide a “fake implementation” of the other code

that “works well enough for the tests”.

– Fake implementation is as small as possible, so the functions

are often called “stubs”.

Dan Grossman CSE303 Winter 2006, Lecture 17 6



'

&

$

%

Stubbing techniques

Honestly something I’ve never been taught, but here are some tricks I

use:

• Instead of computing a function, use a small table of pre-encoded

answers

• Return wrong answers that won’t mess up what you’re testing

• Don’t do things (e.g., print) that won’t be missed

• Use a slower algorithm

• Use an implementation of fixed size (an array instead of a list?)

• ... other ideas?

Lecture-size example can be tough, but we can show the ideas with

the prime-number code from last lecture.

Dan Grossman CSE303 Winter 2006, Lecture 17 7



'

&

$

%

Eating your vegetables

• Make tests:

– early

– easy to run

– that test interesting and well-understood properties

– that are as well-written and documented as other code

• Write the tests first?

• Write much more code than the “assignment requires you turn-in”

• Manually or automatically compute test-inputs and right-answers?

Dan Grossman CSE303 Winter 2006, Lecture 17 8



'

&

$

%

Testing – of what

Summary: Testing has some concepts worth knowing and using

• Coverage

• White-box vs. black-box

• Stubbing

But we made a big assumption, that we know what the code is

supposed to do!

Oftentimes, a complete specification is as difficult as writing the code.

But:

• It’s still worth thinking about.

• Partial specifications are better than none.

• Checking specificatins (at compile-time and/or run-time) is great

for finding bugs early and “assigning blame”.

Dan Grossman CSE303 Winter 2006, Lecture 17 9



'

&

$

%

Full Specification

Often tractable for very simple stuff: “Take an int x and return 0 iff

there exists ints y and z such that y ∗ z == x (where x, y, z > 0
and y, z < x).

What about sorting a doubly-linked list?

• Precondition: Can input be NULL? Can any prev and next fields

be NULL? Must it be a cycle or is “balloon” okay?

• Postcondition: Sorted (how to specify?) – and a permutation of

the input (no missing or new elements).

And there’s often more than “pre” and “post” – time/space overhead,

other effects (such as printing), things that may happen in parallel.

Specs should guide programming and testing!

Dan Grossman CSE303 Winter 2006, Lecture 17 10



'

&

$

%

Partial Specifications

The difficulty of full specs need not mean abandon all hope.

Useful partial specs:

• Can args be NULL?

• Can args alias?

• Are stack pointers allowed? Dangling pointers?

• Are cycles in data structures allowed?

• What is the minimum/maximum length of an array?

• ...

Guides callers, callees, and testers.

Dan Grossman CSE303 Winter 2006, Lecture 17 11



'

&

$

%

Beyond testing

Specs are useful for more than “things to think about while coding”

and testing and comments.

Sometimes you can check them dynamically, e.g., with assertions (all

examples true for C and Java)

• Easy: argument not NULL

• Harder but doable: list not cyclic

• Impossible: Does the caller have other pointers to this object?

Or statically using stronger type systems or other tools:

• Plusses: earlier detection (“coverage” without running program),

faster code

• Minus: Potential “false positives” (spec couldn’t ever actually be

violated)

Dan Grossman CSE303 Winter 2006, Lecture 17 12


