4 N

CSE 303:
Concepts and Tools for Software Development

Dan Grossman
Winter 2006
Lecture 15— Debuggers, e.g., gdb

- /

Dan Grossman CSE303 Winter 2006, Lecture 15 1




/VVhere are We \

“Tools you may not know exist” — debuggers, profilers, library-makers,

recompilation managers, version-control systems.

The concepts behind these tools are orthogonal to programming

language and level of abstraction.
But tools may need to “understand” your PL of choice.
And we'll largely use C to give you more practice.

Today: debuggers (a terribly misnamed tool).

- /

Dan Grossman CSE303 Winter 2006, Lecture 15 2




/An execution monitor? \

What would like to “see from” and “do to” a running program?
Why might all that be helpful?
What are reasonable ways to debug a program?

A “debugger” is a tool that lets you stop running programs, inspect

(sometimes set) values, etc.

- /

Dan Grossman CSE303 Winter 2006, Lecture 15 3




/Issues \

e Source information for compiled code. (Get compiler help.)

e Stopping your program too late to find the problem. (Art.)
e Irying to "debug” the wrong algorithm.

e Trying to “run the debugger” instead of understanding the
program.

It's an important tool. | use it sometimes.

Debugging C vs. Java
e Eliminating crashes does not make your C program correct.

e Debugging Java is “easier’ because crashes and memory errors do
not exist.

\\o But programming Java is “easier” for the same reason! /

Dan Grossman CSE303 Winter 2006, Lecture 15 4



/gdb N

gdb (Gnu debugger) is on attu and supports several languages,

including C compiled by gcc.

Modern IDEs have fancy GUI interfaces, which help, but concepts are
the same.

Compiling with debugging information: gcc -g

e Otherwise, gdb can tell you little more than the stack of function
calls.

Running gdb: gdb executable
e Source files should be in same directory (or use the -4 flag).
At prompt: run args

Note: You can also inspect core files, which is why they get saved. (|

\\never do.) /

Dan Grossman CSE303 Winter 2006, Lecture 15 5




/Basic functionality

e backtrace
e frame, up, down
e print expression, info args, info locals

Often enough for “crash debugging”

Also often enough for learning how “the compiler does things” (e.g.,
stack direction, malloc policy, ...)

-

Dan Grossman CSE303 Winter 2006, Lecture 15 6



/Brea kpoints \

e break function (or line-number or ...)

e conditional breakpoints
1. to skip a bunch of iterations

2. to do assertion checking

e going forward: continue, next, step, finish
— Some debuggers let you “go backwards” (typically an illusion)
Often enough for “binary search debugging”

Also useful for learning program structure (e.g., when is some function
called)

- /

Dan Grossman CSE303 Winter 2006, Lecture 15 7




/Advice

Understand what the tool provides you.

Use it to accomplish a task, for example “l want to know the
call-stack when | get the NULL-pointer dereference”

Optimize your time developing software.
Use development environments that have debuggers?

See also: jdb for Java (on attu)

-

Dan Grossman CSE303 Winter 2006, Lecture 15



