4 N

CSE 303:
Concepts and Tools for Software Development

Dan Grossman
Winter 2006
Lecture 13— C: post-overview, function pointers

- /

Dan Grossman CSE303 Winter 2006, Lecture 13 1




/VVhere are We

Today:
e Top-down view of C
e Function pointers

e Connection to objects

-

Dan Grossman

CSE303 Winter 2006, Lecture 13




ﬂl’op—down post-overview

Now that we have seen most of C, let's summarize/organize:

e Preprocessing

— #include for declarations defined elsewhere

x Definition is textual; idioms very formulaic
— #ifdef for conditional compilation

— #define for token-based textual substitution

e Compiling (type-checking and code-generating)
— A sequence of declarations

— Each C file becomes a .o file

e Linking (more later)
— Take .o and .a files and make a program

\\ — libc.a in by default, has printf, malloc, ...

Dan Grossman CSE303 Winter 2006, Lecture 13



/o Executing

-

— O/S maintains the “big array” address-space illusion
— Execution starts at main

— Library manages the heap via malloc/free

~

Dan Grossman CSE303 Winter 2006, Lecture 13



/C, the language \

e A file is a sequence of declarations:

— Global variables (t x; ort x = e;)

— struct (and union and enum definitions)
— Function prototypes (t £(t1,...,tn);)
— Function definitions

— typedefs

e A function body is a statement

— Statements are similar to in Java (+ goto, —
exception-handling, ints for bools, ...)

— Local declarations have local scope (stack space).

o Left-expressions (locations) and right-expressions (values,

including pointers-to-locations)
\\ — * for pointer dereference, & for address-of, . for field access /

Dan Grossman CSE303 Winter 2006, Lecture 13 5



/C language continued \

“Convenient” expression forms:

e ¢—>f means (xe) .f

e el[e2] means *(el + e2)
— But + for pointer arithmetic takes the size of the pointed to
element into account!
— That is, if el has type t* and e2 has type int, then , then
(el + ¢c) == (((int)el) + (sizeof(t) * c))

— The compiler “does the sizeof for you” — don't double-do it!

“Size is exposed”: In Java, “(just about) everything is 32 bits". In C,
pointers are usually the same size as other pointers, but not everything

Is a pointer.

\\New side point: padding, alignment may mean “bigger than expected”/

Dan Grossman CSE303 Winter 2006, Lecture 13 6



/C IS unsafe \

The following is allowed to set your computer on fire:

array-bounds violation (bad pointer arithmetic), dangling-pointer
dereferences, dereferencing NULL, using results of wrong casts, using
contents of uninitialized locations, linking errors (inconsistent
assumptions), ...

Pointer casts are not checked (no secret fields at run-time; all bits look
the same)

Crashing is a “good thing” compared to continuing silenty with
meaningless data.

- /

Dan Grossman CSE303 Winter 2006, Lecture 13 7




/Function pointers \

“Pointers to code” are almost as useful as “pointers to data”.

(But the syntax is more painful.)

(Somewhat silly) example:

void app_arr(int len, int * arr, int (*f)(int)) {
for(; len > 0; --len)
arr[len-1] = (*f) (arr[len-1]);
+
int twoX(int i) { return 2*i; }
int sq(int i) { return ix*i; }
void twoXarr(int len, int* arr) { app_arr(len,arr,&twoX); |

void sq_arr(int len, int* arr) { app_arr(len,arr,&sq); }

CSE 341 spends a week on why function pointers are so useful; today

\jmostly just how in C. /

Dan Grossman CSE303 Winter 2006, Lecture 13 8




/Function pointers, cont'd \

Key computer-science idea: You can pass what code to execute as an

argument, just like you pass what data to process as an argument.

Java: An object is (a pointer to) code and data, so you're doing both

all the time.

// Java
interface I { int m(int i); }
void f(int arr[], I obj) {
for(int len=arr.length; len > 0; —--len)
arr[len-1] = obj.m(arr[len-1]);
}

The m method of an I can have access to data (in fields).

C separates the concepts of code, data, and pointers.

- /

Dan Grossman CSE303 Winter 2006, Lecture 13 9




/C function-pointer syntax \

C syntax: painful and confusing. Rough idea: The compiler “knows"
what is code and what is a pointer to code, so you can write less tha
we did on the last slide:

arr[len-1] = (xf) (arr[len-1]);
— arr[len-1] = f(arr[len-1]);
app_arr(len,arr,&twoX) ;

— app_arr (len,arr,twoX) ;

part (i.e.,, tO (%) (t1,t2,...,tn)) and for declarations the variable
or field name goes after the *.

Sigh.

-

For types, let's pretend you always have to write the “pointer to code”

n

/

Dan Grossman CSE303 Winter 2006, Lecture 13 10



/Code pointers often want data \

Taking a code pointer can make a function more general because

different callers pass different functions.

But wusually to be more useful you should also pass the function a

void* also provided by the caller.
e Else code-pointer can read only its arguments and globals.
e Using globals does not work well with this idiom.

e The voidx* is like the fields in an OO object.

— Especially if you put it in a struct with the function pointer!

e See list-find example.

- /

Dan Grossman CSE303 Winter 2006, Lecture 13 11




ﬂl’ oward objects \

If you want a pointer to code and data, like in Java, then DIY:

struct MyPoint {
// data

int x;
int y;
// code
int (*getX) (struct MyPointx*);
void (*setX) (struct MyPoint*,int);
int (*getY) (struct MyPointx*);
void (*setY) (struct MyPoint*,int);
) double (*distance2origin) (struct MyPoint*);
Ist arg is Java's this, else code can’t get other (data & code) fields.

Subclassing a slightly more complicated story.

\then this “coding pattern” became common, C++ was born (sorta)./

Dan Grossman CSE303 Winter 2006, Lecture 13 12



