
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Dan Grossman

Winter 2006

Lecture 1— Course Introduction

Dan Grossman CSE303 Winter 2006, Lecture 1 1



'

&

$

%

Welcome!

We have 10 weeks to move to a level well above novice programmer:

• Command-line tools/scripts to automate tasks

• C programming (lower level than Java; higher (?) than assembly)

• Tools for programming

• Basic software-engineering concepts

• Societal/ethical implications of computing

That’s a lot!

Get used to exposure, not exhaustive investigation.

Dan Grossman CSE303 Winter 2006, Lecture 1 2



'

&

$

%

Today

Today in class:

• Course mechanics

• Course overview and motivation

• Dive into the command shell

In the next 36 hours:

• Join the class mailing list

• Email homework 0 (worth 0 points) to me

http://www.cs.washington.edu/education/courses/cse303/05sp/

• Work through the “getting started guide” including

changing-your-shell.

Dan Grossman CSE303 Winter 2006, Lecture 1 3



'

&

$

%

Who and What

• 3 class meetings (slides, code, demos, questions)

– Material on-line (often afterwards), but take notes

– Advice: jot down keywords so you can better look stuff up later

– Advice: use class for concepts (a debugger allows you to

interrupt programs and inspect values) and documentation for

details (b is gnu-debugger abbrevation for breakpoint).

(Class will do more “organizing” than “teaching”.)

– Advice: Try stuff out the same day.

– Warning: The slides are NOT nearly enough for learning the

material. They are an outline only.

• Office hours (Benjamin Ylvisaker, Robert Spies, me)

– Advice: use them

Dan Grossman CSE303 Winter 2006, Lecture 1 4



'

&

$

%

Speaking of note-taking...

“Disability Resources for Students (DRS) is looking for a notetaker for

this class to assist a student who is unable to take complete class

notes because of the effects of a disability. They have asked me to

make an announcement to request volunteers, as a notetaker has not

yet been found. At least two notetakers are needed; a primary who

would be able to copy his/her notes once a week, and an alternate

who would be on standby as a back-up notetaker. The time

commitment is minimal, but the difference it makes for the student is

significant. DSS pays for the photocopying and will provide a letter of

recommendation for your volunteer hours.

If you are interested in volunteering, or if you have any questions,

please contact DRS for more information. They are located in Schmitz

Hall, room 448. You may call DRS at 543-8924 or email them at

uwdss@u.washington.edu. Thank you for your consideration.”

Dan Grossman CSE303 Winter 2006, Lecture 1 5



'

&

$

%

Homework and Exams

• 6–7 homeworks

– 2 on shells and shell scripting

– 2-3 on C

– 2-3 on programming tools and methodologies (1 in small

teams)

• 1 short paper on societal implications

– More on this later

• 1 midterm and 1 final

Collaboration: The Gilligan’s Island Rule

Extra Credit: When available, small effect on your grade

Dan Grossman CSE303 Winter 2006, Lecture 1 6



'

&

$

%

Academic Integrity

Read every word of the course policy very carefully.

Always explain any unconventional action on your part.

Promoting and enforcing academic integrity has been a personal focus

of mine for 12 years now:

• I trust you completely

• I have no sympathy for trust violations, nor should you

Honest work is the most important feature of a university.

Particularly fine line: Looking at similar shell scripts is useful!

Dan Grossman CSE303 Winter 2006, Lecture 1 7



'

&

$

%

What is this “303” thing?

303 (formerly 490C) is a fairly new course (first offered Spring 03)

A noticeable “laundry list of everything else” feel/place in the

curriculum.

But there’s a real common thread worth remembering:

There is an amorphous set of things computer scientists know about

and novice programmers don’t. Knowing them empowers you in

computing, lessens the “friction” of learning in other classes, and

makes you a mature programmer.

You “toss things in your mental purse” your whole career; 303 gives

you a sense of what’s out there and starts you on the path.

Dan Grossman CSE303 Winter 2006, Lecture 1 8



'

&

$

%

5 rough areas

Purses are messy, but we can still categorize:

1. The command-line

• Text-based manipulation of your computing environment

• Automating (scripting) the manipulation

• Using powerful utility programs

Quick-and-dirty ways to let the computer do what it’s good at so you

don’t have to!

We will use Linux (an operating system) and bash (a shell), though

it’s irrelevant for the concepts.

Half the battle: Knowing the name of what “really ought to exist”

Half the battle: Programming in a language designed for interaction

Dan Grossman CSE303 Winter 2006, Lecture 1 9



'

&

$

%

5 rough areas

Purses are messy, but we can still categorize:

2. C

• “The” programming languge for operating systems, networking

code, embedded devices, ...

• Manual resource management

• Trust the programmer; a “correct” C implementation can run a

program with an array-bounds error and set the computer on fire

• A “lower level” view of programming where it can help to know

that all code and data sits together in “one big array of bits”.

Half the battle: Parts look like Java, but that can deceive you

Half the battle: Learning to think before you write and test often

Dan Grossman CSE303 Winter 2006, Lecture 1 10



'

&

$

%

5 rough areas

Purses are messy, but we can still categorize:

3. Programming tools

So far you have written programs and run them. There are programs

for programming you should know about:

• Compilers (vs. interpreters)

• Debuggers

• Profilers

• Linkers and Library managers

• Recompilation managers

• ...

Dan Grossman CSE303 Winter 2006, Lecture 1 11



'

&

$

%

5 rough areas

Purses are messy, but we can still categorize:

4. Software-development concepts:

Stuff you may not need for 1e2 line programs, but how about 1e6?

• Testing methodologies

• Team-programming concepts

• Version-control systems

• Software specifications

• ...

Dan Grossman CSE303 Winter 2006, Lecture 1 12



'

&

$

%

5 rough areas

Purses are messy, but we can still categorize:

5. Societal/ethical implications of computing:

Being a professional/scientist/engineer requires confronting societal

considerations.

We won’t “teach politics” but we will think critically about computing

issues challenging humanity because we cannot only leave it to

politicians, lawyers, philosophers, ...

Examples: software patents, digital privacy, digital rights management,

software licensing, software-engineer certification, the digital divide,

accessibility, software security, electronic voting

Dan Grossman CSE303 Winter 2006, Lecture 1 13



'

&

$

%

View of a large world

1. The command-line

2. C

3. Programming tools

4. Software-development concepts

5. Societal/ethical implications of computing

“There is more to programming than Java methods”

“There is more to software development than programming”

“There is more to computer science than software development”

“There is more to computing’s effects than computer science”

So let’s get started...

Dan Grossman CSE303 Winter 2006, Lecture 1 14



'

&

$

%

The O/S, the filesystem, the shell

Some things you might have a sense of but never were told precisely

(may as well start at the beginning)...

• The file-system is a tree

– (Actually it’s a dag)

– The top is /

– Interior nodes are directories

• Users log-in, which for Linux means getting a shell

– They have permissions to access certain files/directories

– They can run programs. A running program is a process.

(Actually could be more than 1.)

Dan Grossman CSE303 Winter 2006, Lecture 1 15



'

&

$

%

File Access

You may be used to manipulating files via a GUI using WIMP.

You can do all the same things by running programs in the shell.

Just like an “explorer window”, the shell has a current working

directory.

It really helps to remember the names of key commands: ls, cp, mv,

rm, cat, cd, pwd. (Most are really just programs.)

Current directory: .

Parent directory: ..

Relative vs. absolute pathnames

Dan Grossman CSE303 Winter 2006, Lecture 1 16



'

&

$

%

Why would anyone want to interact like this?

• Old people who remember life before GUIs :-)

• Power users who can go faster

• Users who want easy logging

• Users who want easy instructions

• Users who want programmability

The last one will be the core of homeworks 1 and 2.

Most computer scientists use GUIs and shells, depending what they’re

doing.

Linux has GUIs and Windows has shells.

Dan Grossman CSE303 Winter 2006, Lecture 1 17



'

&

$

%

Options and man

Bad news at first: Program names and options are short, arcane, and

numerous.

Good news:

• Most programs will print a usage argument if given bad options

(or often -help).

• The program man takes a program name and prints a file

descrbing the program.

• There are tons of other resources.

• Decades of existence has led to standardized things:

– Dashes for options, followed as necessary by option argument

Dan Grossman CSE303 Winter 2006, Lecture 1 18



'

&

$

%

More programs and options

• less (is more)

– used by man

– spacebar, b, /search-exp, q

• chmod

• mail

And some that aren’t technically programs (more on this later)

• exit

• echo

• (cd)

Dan Grossman CSE303 Winter 2006, Lecture 1 19



'

&

$

%

The shell, again

The shell is an interpreter for a strange programming language (of the

same name). So far:

• “Shell programs” are program names and arguments

• The interpreter runs the program (passing it the arguments),

prints any output, and prints another prompt. The program can

affect the file-system, send mail, open windows, etc.

• “Builtins” such as exit give directions to the interpreter.

It’s actually much more complicated:

• (two kinds of) variables.

• some programming constructs (conditionals, loops, etc.)

• The shell interprets lots of funny characters differently, rather than

pass them as options to programs.

Dan Grossman CSE303 Winter 2006, Lecture 1 20


