
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Dan Grossman

Spring 2005

Lecture 9— C: structs, heap-allocation, initialization, memory

management

Dan Grossman CSE303 Spring 2005, Lecture 9 1

'

&

$

%

Where are We
We are learning C, a lower-level and less-safe language than Java So

far:

• Basic control constructs

• Left vs. right expressions

• The address-of (&) and dereference (*) operators

• Some strange rules for arrays

Today:

• structs

• memory management

• initialization

Later: header files, the preprocessor, printf, casts, function pointers,

gotchas

Dan Grossman CSE303 Spring 2005, Lecture 9 2

'

&

$

%

From last time...

A couple points that got lost in the shuffle:

• Dangling pointers and lifetime vs. scope

• Declarations should precede uses

Dan Grossman CSE303 Spring 2005, Lecture 9 3

'

&

$

%

Dangling Pointers

int* f(int x) {

int *p;

if(x) {

int y = 3;

p = &x; /* ok */

} /* ok, but p now dangling */

/* y = 4 does not compile */

p = 7; / YPMSTCOF, but probably not */

return p; /* uh-oh */

}

void g(int *p) { *p = 123; }

void h() {

g(f(7)); /* YPMSTCOF, and likely a problem */

}

Dan Grossman CSE303 Spring 2005, Lecture 9 4

'

&

$

%

No forward references

• A function must be defined and/or declared before it is used.

(Lying: “implicit declaration” warnings, return type assumed to be

int, ...)

• You get a linker error if something is declared but never defined

(or main is not defined).

• You can still write mutually recursive functions, you just need a

declaration.

Dan Grossman CSE303 Spring 2005, Lecture 9 5

'

&

$

%

Structs

A struct is a record.

A pointer to a struct is like a Java object with no methods.

x.f is for field access.

(*x).f in C is like x.f in Java.

x->f is an abbreviation for (*x).f.

There is a huge difference between passing or assigning a struct and

passing or assigning a pointer to a struct.

Again, left-expressions evaluate to locations (which can be whole

struct locations or just field locations).

Again, right-expressions evaluate to values (which can be whole structs

or just fields).

Dan Grossman CSE303 Spring 2005, Lecture 9 6

'

&

$

%

Heap-Allocation

So far, all of our ints, pointers, arrays, and structs have been

stack-allocated, which in C has two huge limitations:

• The space is reclaimed when the allocating function returns

• The space required must be a constant (only an issue for arrays)

Heap-allocation has neither limitation.

Comparison: new C(...) in Java:

• Allocate space for a C (exception if out-of-memory)

• Initialize the fields to null or 0

• Call the user-written constructor function

• Return a reference (hey, a pointer!) to the new object.

In C, these steps are almost all separated.

Dan Grossman CSE303 Spring 2005, Lecture 9 7

'

&

$

%

Malloc, part 1

malloc is “just” a library function: it takes a number, heap-allocates

that many bytes and returns a pointer to the newly-allocated memory.

• Returns NULL on failure.

• Does not initialize the memory.

• You must cast the result to the pointer type you want.

• You do not know how much space different values need!

Do not do things like (struct Foo*)(malloc(8))!

Dan Grossman CSE303 Spring 2005, Lecture 9 8

'

&

$

%

Malloc, part 2

malloc is “always” used in a specific way:

(t*)malloc(e * sizeof(t))

Returns a pointer to memory large enough to hold an array of length e

with elements of type t.

It is still not initialized (use a loop)!

Underused friend: calloc (takes e and sizeof(t) as separate

arguments, initializes everything to 0).

Dan Grossman CSE303 Spring 2005, Lecture 9 9

'

&

$

%

Half the Battle
We can now allocate memory of any size and have it “live” forever.

For example, we can allocate an array and return it.

Unfortunately, computers do not have infinite memory so “living

forever” could be a problem.

Java solution: Conceptually objects live forever, but the system has a

garbage collector that finds unreachable objects and reclaims their

space.

C solution: You explicitly free an object’s space by passing a pointer

to it to the library function free.

Freeing heap memory correctly is very hard in complex software and is

the disadvantage of C-style heap-allocation.

• Later we will learn idioms that help. For now just learn the rules

of the game.

Dan Grossman CSE303 Spring 2005, Lecture 9 10

'

&

$

%

Everybody wants to be free(d once)

int * p = malloc(sizeof(int));

int * p = NULL; /* LEAK! */

int * q = malloc(sizeof(int));

free(q);

free(q); /* YPMSTCOF */

int * r = malloc(sizeof(int));

free(r);

int * s = malloc(sizeof(int));

*s = 19;

r = 17; / YPMSTCOF, but maybe *s==17 ?! */

Problems much worse with functions:

f returns a pointer; (when) should f’s caller free the pointed-to object?

g takes two pointers and frees one pointed-to object. Can the other

pointer be dereferenced?

Dan Grossman CSE303 Spring 2005, Lecture 9 11

