
CSE 303:
Concepts and Tools for Software Development

Ben Hindman / Dan Grossman
Spring 2005

Lecture 6 - Line Editors and Filters

Line Editors and Filters
ed, grep, sed, tr, sort, awk, uniq . . and many more

In practice grep/sed used a lot. Many other UNIX commands help the
operation of sed and grep but most jobs can be accomplished within
sed.

Awk is very powerful, it can be considered a programming language.

Tradeoffs:
• new syntax vs. using something you know (if hard to accomplish task?)
• speed & efficiency (c/c++) vs. builtin constructs (why shell scripting?)

Gnu Sed, Gawk, commercial products and regular expressions: see man
pages for which version you are using and how they deal with regex’s!

Line Editors
Using an arcane syntax you manipulate line by line of a
file.

grep: from ed, g/re/p “global regular expression print”

 • can’t grep (grab) multiple lines (grep -B2 -A2 [-C])
 • can’t do replace or substitution
 • can’t limit what is printed, whole line or filename

sed: “Stream Editor”, reads in one line at a time and
executes instructions you give it

sed
You tell sed what to do by appending commands to
the list of commands.

sed -e ‘p’ -e ‘l’
sed -n -e ‘p’ -e ’l’

sed script
......
......
......

input line

output

input

(Unless you control the flow of
the script or line grabing in any
way, sed executes your
commands in the order you
appended them then grabs
the next line.)

sed continued

sed reads each line into a pattern space.

You can address line(s) [pattern spaces] by line numbers and
regular expressions . . . from the man pages:

 • a command with no addresses selects every pattern space
 • a command with one address selects all pattern spaces that

match the address (1, /./, $)
 • a command with two address selects the “inclusive range from

the first pattern space that matches the first address through the
next pattern space that matches the second . . .” -> see the man
page please.
• ! Matches all lines but the line that the address matches (1!, $!)

Lets get to some examples!

sed continued

• Use /re/ to specify an address with a regular expression and
/re1/,/re2/ to specify two addresses.

• To group multiple commands together for certain line matches
use the ‘{‘ and ‘}’ characters:

{function; function; } =>
{function
function
}

(notice the ; and new
line correspondence)

Some functions/commands can be addressed with two addresses
while some are addressed with one address and some with no
addresses.

See the man page for all the functions/commands that can be
used and try them out.

sed continued

I lied, the picture wasn’t perfect

pattern space hold space

sed script
......
......
......

input line

output

input

sed has a buffer to
hold lines or text
you might want to
use later. Functions
and commands
operate on either
the hold space or
the buffer space, or
both. The hold
space is persistent
over multiple line
reads.

sed gotchas

• sed doesn’t let you match the new line at the end of a file, use $
for the end of a line. (Don’t confuse it with the last line address)

• you can match \n inside RE’s only after you have grabbed a
second line. (N or n)

• if you want to add a new line into the output with the substitute
command actually include the new line in the command script.
sed -e ‘/hello/s//\\
&/’

• when scripts get complicated command lines get confusing, put
them in a file and use sed -f

awk

Awk is best used on structured input. In fact, awk makes the
assumption that its input is structured and not just an endless
string of characters.

……..
In the simplest case (which is all we are going to talk about today)

awk takes each input line as a record and each word,
separated by spaces or tabs, as a field. We use the word
delimiter to describe the characters separating the fields and if
we choose to we can set the delimiters ourselves (excel comma
delimited files anyone?)

Two or more consecutive spaces or tabs count as a single delimiter.
$0 refers to the whole record, $1 the first field, $2 the second field,

and so on.

See example.

bash and beyond . .
Other command interpreters (shells) do exist! You don’t have to use

tcsh or csh on your own linux boxes or on attu. So, since we end
the shell section of the course now, let me say a few words about
the most popular shell.

 • all builtin’s in bash are considered programs, ie if [expression]
means that if and [are programs. This isn’t necessary in the shell,
since you can program it to parse however you want, but this
requires less parsing. (diff, test syn.) [Pros or Cons?]
• help is builtin!!! (help [)
• my favorite: reverse history search! (^r)
• functions in bash (alias is not as powerful in bash, word events)
• less limitations in terms of variable size and word size (man tcsh)
• bash is big and slow . . . (man bash /bugs)

I encourage everyone to learn more! When you put this stuff
together the possibilities are endless!

cat myninja.htm | sed -e 's/ninja/koala/g' > koala.htm
Since we don’t have | (alternation, union) howelse can we grab all possible

types of ninja
cat myninja.htm | sed -e 's/ninja/koala/g;s/Ninja/Koala/g;s/NINJA/KOALA/g'

> koala.htm
Oops! We need to change the links first!
cat myninja.htm | sed -e

'/src/s/src="\([^"]*\)"/src="http:\/\/www.realultimatepower.net\/\1"/g' >
koala.htm

Now lets go back and change the ninjas.
cat koala.htm | sed -e

'/src/!{s/ninja/koala/g;s/Ninja/Koala/g;s/NINJA/KOALA/g;}' > koala2.htm

Commands used: ! s /address/ {}s//g \n (back referencing)

cat koala.htm | sed -e 's/<[^>]*>//g;/<[^>]*.*$/{:loop;$!N;s/<[*>]*>//g;t
end;b loop;};:end’

cat koala.htm | sed -e 's/<[^>]*>//g
/<[^>]*.*$/{:loop
$!N
s/<[*>]*>//
t end
b loop
}
:end’
A shorter version:
sed -e :a -e 's/<[^>]*>//g;/</N;//b a’
Now get rid of empty lines
/^$/d
/./!d

Commands used: b t :label N $ (address) ! d

Now, if I told you that = wrote the line number followed by a new line
character, then tell me how to count lines with sed instead of say, wc:

cat myninja.htm | sed -n -e '$=’

Will I ever use sed in real life?
First, where is the file dict? How did Dan get it before, I could look for it with

find, but instead of waiting all that time, maybe its in my path, hmm, how
can I easily put all those path’s on my command line without typing them
all out, argg.

find `echo $PATH | sed -e 's/:/ /g'` -name "dict”
I guess I’m a moron and its not in my path, oh well

Last homework people used tac, tac is reverse cat, its not on my linux box or
my mac, AM I HELPLESS! NO!

head -100 /usr/share/dict/words | sed -n -e '1!G;h;$p' | less
tac /usr/share/dict/words | less

How about removing extra lines?
sed '/./,/^$/!d’ (what is the caveat for this expression”)

Commands used: /addr1/,/addr2/ G h p -n =

dos2unix:

printf "i am from windows\r\n\r\n" | sed -e 's/.$//’

printf "i am from windows\r\n\r\n" | sed -e ’l;s/.$//;l’

Commands used: l

w | awk '$1 == "jrp" && $5 ~ /.*[.:]..[ms]/ { if (system("echo jrp online | mail -s
\"online\" 9704010147@vtext.com") != 0) print "Command Failed" }’

printf "1 * * * * source `pwd`/wonline\n" | crontab

* * * * * w | awk '$1 == "b" && $5 ~ /.*[.:]..[ms]/ { if (system("echo b online |
mail -s \"online\" 9704010147@vtext.com") != 0) print "Command Failed" }'

