
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Dan Grossman

Spring 2005

Lecture 25— Memory-Management Idioms

Dan Grossman CSE303 Spring 2005, Lecture 25 1



'

&

$

%

No tools or rule today

Review: Java and C memory-management rules

Idioms for memory-management:

• Garbage collection

• Unique pointers

• Reference Counting

• Arenas (a.k.a. regions)

Generalization: Same “problems” with file-handles,

network-connections, Java-style iterators, ...

Dan Grossman CSE303 Spring 2005, Lecture 25 2



'

&

$

%

Java rules

• Space for local variables lasts until end of method-call, but no

problem because cannot get pointer into stack

• All “objects” are in the heap; they conceptually live forever.

– Really get reclaimed when they are unreachable (from a stack

variables or global variable).

– Static fields are global variables.

Consequences:

• You rarely think about memory-management.

• You can run out of memory without needing to (e.g., long dead

list in a global), but you still get a safe exception.

• No dangling-pointer dereferences!

• Extra behind-the-scenes space and time for doing the collection.

Dan Grossman CSE303 Spring 2005, Lecture 25 3



'

&

$

%

C rules
• Space for local variables lasts until end of function-call, may lead

to dangling pointers into the stack.

• Objects into the heap live until free(p) is called, where p points

to the beginning of the object.

• Therefore, unreachable objects can never be reclaimed.

• malloc returns NULL if it cannot find space.

• TFMSTCOFa:

1. Calling free with a stack pointer or middle pointer.

2. Calling free twice with the same pointer.

3. Dereferencing a pointer to an object that has been freed.

• Usually 1–2 screw up the malloc/free library and 3 screws up an

application when the space is being used for another object.
aThe Following May Set The Computer On Fire

Dan Grossman CSE303 Spring 2005, Lecture 25 4



'

&

$

%

Garbage Collection for C

Yes, there are garbage collectors for C (and C++)!

http://www.hpl.hp.com/personal/Hans_Boehm/gc/

• redefines free to do nothing

• unlike a Java GC, conservatively thinks an int might be a pointer.

Questions to ask yourself in any application:

• Why do I want manual memory management?

• Why do I want C?

Good (and rare!) answers against GC: Tight control over performance;

even short pauses unacceptable; need to free reachable data.

Good (and rare!) answers for C: Need tight control over data

representation and/or pointers into the stack.

Other answer for C: need easy interoperability with lots of existing code

Dan Grossman CSE303 Spring 2005, Lecture 25 5



'

&

$

%

Analogous situations

The manual memory-management challenge boils down to: For each

object, you might have multiple pointers but you need to call free:

• exactly once

• not too late (space consumption)

• not too early (dangling-pointer derereferences)

Even if you have GC for memory, you’ll probably have the same thing

for other “interfaces”.

Example: Java OutputStream (cannot call write after close).

Example: complete_input in your homework.

In general, a library “wants to know” when you’re done with

something, and it’s up to you to make a timely and accurate report.

Dan Grossman CSE303 Spring 2005, Lecture 25 6



'

&

$

%

Why is it hard?

This is not really the problem:

free(p);

...

p->x = 37; // dangling-pointer dereference

These are:

p = q; // if p was last reference and q!=p, leak!

lst1 = append(lst1,lst2);

free_list(lst2); // user function, assume it

// frees all elements of list

length(lst1); // dangling-pointer dereference

// if append does not copy!

There are an infinite number of safe idioms, but only a few are known

to be simple enough to get right in large systems...

Dan Grossman CSE303 Spring 2005, Lecture 25 7



'

&

$

%

Idiom 1: Unique Pointers

Ensure there is exactly one pointer to an object. Then you can call

free on the pointer whenever, and set the pointer’s location to NULL

to be “extra careful”.

Furthermore, you must free pointers before losing references to them.

Hard parts:

1. May make no sense for the data-structure/algorithm.

2. May lead to extra space because sharing is not allowed.

3. Easy to lose references (e.g., p=q;).

4. Easy to duplicate references (e.g., p=q;) (must follow with

q=NULL;).

5. A pain to return unfreed function arguments.

Dan Grossman CSE303 Spring 2005, Lecture 25 8



'

&

$

%

Relaxing Uniqueness

This is just too painful:

struct T { int*x; int*y; };

void g(int *p1, int*p2) {

printf("%d %d’’,*p1,*p2);

struct T ans;

ans.x = p1;

ans.y = p2;

return ans;

}

void f(int *p1, int*p2) {

struct T ptrs = g(p1,p2);

p1 = ptrs.x; p2 = ptrs.y;

...

free(p1);

free(p2);

}

Dan Grossman CSE303 Spring 2005, Lecture 25 9



'

&

$

%

Relaxing Uniqueness

Instead, you allow “unconsumed” pointers:

• Callee won’t free them

• They will be unique again when function exits

More often what you want, but changes the contract:

• Callee must not free

• Callee must not store the pointer anywhere else (in a global, in a

field of an object pointed to by another pointer, etc.)

Dan Grossman CSE303 Spring 2005, Lecture 25 10



'

&

$

%

Reference-Counting

Store with an object how many pointers there are to it. When it

reaches 0, call free.

• Literally a field in each pointed to object.

• p=q; becomes decr_count(p); p=q; incr_count(p);

• In practice, you can “be careful” and omit ref-count manipulation

for temporary variables.

struct Example { int count; ... };

void decr_count(struct Example * p) {

--p->count;

if(p->count == 0)

free(p);

}

void incr_count(struct Example * p) { ++p->count; }

Dan Grossman CSE303 Spring 2005, Lecture 25 11



'

&

$

%

Reference-Counting Problems

1. Avoids freeing too early, but one lost reference means a leak.

2. Reference-count maintenance expensive and error-prone (C++

tricks can automate to some degree).

3. CYCLES!

Cycle detection looks a lot like GC.

(Actually, there’s this cool folk-algorithm for detecting if a list is

cyclic.)

Dan Grossman CSE303 Spring 2005, Lecture 25 12



'

&

$

%

Arenas (a.k.a. regions)

Rather than track each object’s “liveness”, track each object’s

“region” and deallocate a region “all at once”.

Revised memory-management interface:

typedef struct RgnHandle * region_t;

region_t create_rgn();

void destroy_rgn(region_t);

void * rgn_malloc(region_t,int);

So now you “only” have to keep track of a pointer’s region and the

region’s status. (In theory, no simpler? In practice, much simpler!)

Dan Grossman CSE303 Spring 2005, Lecture 25 13



'

&

$

%

Arena Uses

Examples:

• Scratch space for lots of lists with sharing. When you’re done,

copy out the one answer and destroy the region.

• Callee chooses size, number of objects, aliasing patterns.

Caller choose lifetime (and passes in a handle as an argument).

• You can track handles and inter-region pointers via other means

(e.g., reference-counting) while “ignoring” intra-region pointers.

Dan Grossman CSE303 Spring 2005, Lecture 25 14



'

&

$

%

Conclusions

Memory management is difficult; each “general approach” has plusses

and minuses.

As with any “design patterns”, knowing vocabulary helps

communicate, assess trade-offs, and reuse hard-won wisdome.

Key notions: reachability, aliasing, cycles, “escaping (e.g., storing

argument in global)”. Each approach restricts one of them to some

degree.

Dan Grossman CSE303 Spring 2005, Lecture 25 15


