
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Dan Grossman

Spring 2005

Lecture 24— Security, Defensive Programming, Assertions, ...

Dan Grossman CSE303 Spring 2005, Lecture 24 1



'

&

$

%

Where are We

I don’t think we’ll learn any more tools, but there are lots more: lint,

Purify, gui-builders, automated testers, installers, ...

Tools are great (and underused), but never a full solution:

Example: cvs is not a group-management solution

So: Some general programming issues and some important “odds and

ends” (C++ taste, threads, html+cgi, maybe UI design)

Today: Security, Defensive Programming, ...

Why:

• It’s important

• For homework 7, you’re going to put a (Java+C+shell) program

up on the Web that will run with strangers’ inputs!

Dan Grossman CSE303 Spring 2005, Lecture 24 2



'

&

$

%

Security

Computer security is a huge area; we can’t cover it in 20 minutes.

Robust software (no buffer-overflows, uncaught exceptions, etc.) is

necessary but in no way sufficient to achieve “security”.

Non-coding examples:

• Guessable passwords

• File permissions

• Tricking humans (email clicks, ...)

Subtle coding examples:

• Timing and other covert channels (classic example: early-exit

password checking)

• File-system tricks (relative paths and races on accesses)

Security is hard!

Dan Grossman CSE303 Spring 2005, Lecture 24 3



'

&

$

%

Security is Worst-Case

What you cannot say when writing a function:

• I can’t imagine anyone ever passing arguments like that.

• If the arguments don’t make sense, “behavior is unpredicatable”.

• I’ll get it working now, and close the security holes later when I

have time.

Some mottos/axioms:

• Principle of least privilege: Give each entity no more rights than it

needs to accomplish its task.

• Obscurity is not security.

– Guessing URLs, phone-tree numbers, back-doors, etc.

Also: simple, well-defined security policies separate from

implementations

Dan Grossman CSE303 Spring 2005, Lecture 24 4



'

&

$

%

Security-breach impact

Also be clear about what is at stake:

• Resource-consumption (denial-of-service)

• Data revealing (privacy, theft)

• Data corruption (destruction of property)

• Full machine compromise (run arbitrary programs on attacked

computer)

Take preventative measures. Example: the CSE department uses a

different webserver for CGI scripts and it does not have access to

home directories.

Dan Grossman CSE303 Spring 2005, Lecture 24 5



'

&

$

%

Check your inputs

Any nontrivial program has untrusted inputs (command-line args, files,

mouse-clicks, etc.)

• What properties do you expect them to have (integers,

buffer-lengths, alphabetical characters, ...)

• Check these properties!!!

Bad examples:

• printf(argv[0])

• char x[256]; strcpy(x,argv[1]);

• SQL-injection attacks

– See C-shell analogy.

A sad tale: The FUZZ studies

Dan Grossman CSE303 Spring 2005, Lecture 24 6



'

&

$

%

Input-checking is more general

“Defensive programming” is good software-engineering practice

regardless of security:

• Check your function inputs (at least of public) methods

– At comile-time if possible

– At run-time if possible

– Not just in debug-mode (if not too expensive)

– Not everything is possible

• Assertions are so common, Java added them to the language.

• Preaching: How can assertions be more important during testing?!

Dan Grossman CSE303 Spring 2005, Lecture 24 7



'

&

$

%

Static vs. Dynamic

Assertions are run-time checks.

Less flexible but cheaper and more useful are static checks.

In C, everything is circumventable, so let’s consider Java:

• Static checks are why you don’t make every method argument

have type Object.

• Things you might like to check: ints are less than array lengths,

arguments are not null, ...

• There are tools and specification-languages for this sort of thing,

but often English comments are used. Sigh.

Dan Grossman CSE303 Spring 2005, Lecture 24 8



'

&

$

%

Copy your inputs/outputs

In the presence of mutation (as in C and Java), checking inputs is not

always enough:

• What if the untrusted source can change the inputs after you

check them but before you use them.

• What if you give out pointers to internal data and untrusted

recipient assigns through the pointers.

Java example (security flaw in JDK1.1) a class’s permissions:

public class Class {

private Identity[] signers;

public Identity[] getSigners() { return signers; }

...

}

Another motto: “copy-in/copy-out”

Dan Grossman CSE303 Spring 2005, Lecture 24 9



'

&

$

%

A note on ethics

An analogy: Engineers learning how to make strong glass might learn

about the weakenesses of glass, how one can throw rocks through

glass, etc.

It is still illegal to break a window that is not yours and dangerous to

throw rocks.

Giving examples of hacks can make you a more secure programmer.

Unleashing hacks can lead to long “government-sponsored vacations”.

Dan Grossman CSE303 Spring 2005, Lecture 24 10


