
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Dan Grossman

Spring 2005

Lecture 11— C: casts, lists, ...

Dan Grossman CSE303 Spring 2005, Lecture 11 1

'

&

$

%

Where are We

We have learned most of the important stuff with C, so now we will

more toward idioms and larger programs.

• Today: casts, linked lists

• Friday: The C pre-processor (stuff starting with #) and printf

• Monday: Post-overview, coding up objects

• Wednesday: Societal Implications (TBD)

• Friday: MIDTERM (through next Monday, not counting “lecture”

10)

– Will post a bit of information

– Closed-book, but one side of 8.5x11 sheet of paper

Later: 30–50 minutes on C++

Dan Grossman CSE303 Spring 2005, Lecture 11 2

'

&

$

%

Pointers and Syntax

There is the conceptual difficulty of keeping track of locations vs.

contents, structs vs. pointers to structs, etc.

But there is also some syntactic confusion because the same

characters are used for a few things:

• t*, the type of pointers to locations holding one or more ts

• *e, an expression for the location pointed to by the pointer e

evaluates to.

– As left-expression, the location

– As right-expression, the location’s contents

• e1 * e2, multiplication

int * f(int * size_ptr) {

return (int*)malloc(*size_ptr * sizeof(int)); // all 3!

}

Dan Grossman CSE303 Spring 2005, Lecture 11 3

'

&

$

%

Pointers and Syntax

& also has 3 syntactic uses, but typically less confusion:

• &e, an expression for the pointer to a location:

– e is evaluated as a left-expression

– &e is a right-expression only

• e1 && e2, “short-circuiting and”, like in Java, but 0 (and NULL)

are false.

• e1 & e2, “bitwise and” (also in Java, but rarely used)

Dan Grossman CSE303 Spring 2005, Lecture 11 4

'

&

$

%

The C types

There are an infinite number of types in C, but only a few ways to

make them:

• char, int, double, etc. (many more such as unsigned int)

• void (a type no expression can have)

• struct T where there is already a declaration for that struct type.

• Array types (basically only for stack arrays, every use is

automatically converted to a pointer type)

• t* where t is a type

• union T, enum E (later, maybe)

• function-pointer types (later)

• typedefs (just expand to their definition)

Dan Grossman CSE303 Spring 2005, Lecture 11 5

'

&

$

%

Casts, part 1

Syntax: (t)e where t is a type and e is an expression (same as Java).

Semantics: It depends.

• If e is a numeric type and t is a numeric type, this is a conversion.

– To wider type, get same value

– To narrower type, may not (will get mod)

– From floating-point to integral, will round

– From integral to floating-point, may round (but int to double

won’t round on most machines)

Note: Java is the same without the “most machines” part.

Note: There are also lots of implicit conversions such as in

function calls.

Bottom line: Conversions involve “real” operations; (double)3 is

a very different bit pattern than (int)3.

Dan Grossman CSE303 Spring 2005, Lecture 11 6

'

&

$

%

Casts, part 2

• If e has type t1*, then (t2*)e is a (pointer) cast.

– You still have the same pointer (index into the address space).

– Nothing “happens” at run-time.

– You are just “getting around” the type system, making it easy

to potentially set the computer on fire.

– Old example: malloc has return type void*.

void evil(int **p, int x) {

int * q = (int*)p;

*q = x;
}

void f(int **p) {

evil(p,345);

**p = 17; // writes 17 to address 345 (crash)

}
Note: The C standard is more picky than I will suggest, but few people know that and little code obeys the official rules.

Dan Grossman CSE303 Spring 2005, Lecture 11 7

'

&

$

%

Pointer casts continued

Questions worth answering:

• How does this compare to Java’s casts?

– Unsafe, unchecked

– Otherwise more similar than it seems

• When should you use pointer casts in C?

– For “generic” libraries (malloc, linked lists, etc.)

– For “subtyping” (later)

• What about other casts?

– Casts to/from struct types are compile-time errors.

Dan Grossman CSE303 Spring 2005, Lecture 11 8

'

&

$

%

Java casts

Java casts (e.g., (Foo)e explained) to C programmers:

• e evaluates to a pointer to an object.

• Objects have “secret fields” at run-time indicating their class.

• If the object’s secret field is Foo or a (transitive) subclass of Foo

“succeed”. Else raise an exception.

• If e’s (compile-time) type is a (transitive) subtype of Foo, then

the compiler can “omit the check”. (Called an upcast.)

• If e’s (compile-time) type is neither a (transitive) subtype nor

supertype of Foo, it is a compile-time error. (The cast could never

succeed.)

Dan Grossman CSE303 Spring 2005, Lecture 11 9

'

&

$

%

Linked lists

Linked lists are a very common data structure.

Building them in C:

• Gives practice with pointers, structs, malloc, etc.

• Leads to using casts for “generic” types.

• Shows memory management problems if lists “share tails”.

• Shows the trade-offs between lists and arrays.

See the code! Understand the code!

Dan Grossman CSE303 Spring 2005, Lecture 11 10

