
University of Washington, CSE 190 M
Homework Assignment 9: Kevin Bacon

This assignment asks you to interact with relational databases in PHP using SQL, as well as tying together the
concepts taught throughout this course. You will write the following pages:

Background Information:

The Six Degrees of Kevin Bacon is a game based upon the theory that every actor can be connected to actor
Kevin Bacon by a chain of movies no more than 6 in length. (Most, but not all, can reach him in 6 steps. 12% of all
actors cannot reach him at all.) If you prefer, you may use another actor rather than Kevin Bacon as the center
point, so long as that actor is in our database and has a large number of connections to other actors.

Your task for this assignment is to write the HTML and PHP code for a web site called MyMDb that mimics part
of the popular IMDb movie database site. Your site will show the movies in which another actor has appeared with
Kevin Bacon. The site will also show a list of all movies in which the other actor has appeared.

The front search page mymdb.php has a form where the user can type an actor's name. When the form is
submitted, results are shown on search.php. Turn in at least the following files:

• mymdb.php, the front signup page

• bacon.css, the CSS styles for both pages

• bacon.js, the JavaScript code for both pages

• search.php, the search results page

• common.php, any common code that is shared between pages ("optional")

You may have additional files beyond these if you like. But the above files are required at a minimum. If you have
other files beyond these, submit those in a .ZIP archive hw9.zip on the same turnin page as the other files.

Since this is the last assignment of the quarter, one of its themes is to tie together much of the material you have
learned. You will write some HTML/CSS and JavaScript and a large amount of PHP and SQL code.

To help with grading, in every HTML or PHP page that will be displayed to the user, you must include a
script tag that links to the following instructor-provided JavaScript code. For now this file will be blank.

• http://www.cs.washington.edu/education/courses/cse190m/11sp/homework/9/provided.js

Appearance Constraints (both pages):

Your mymdb.php and search.php must both match certain appearance criteria listed below. Beyond these, any
other aspects of the page are up to you, so long as it does not conflict with what is required. Please link to all images
on your page using absolute paths, not relative paths.

• The same title, and links to the same CSS and JavaScript resources.

• A "favorites icon". If you like, you may use the provided mymdb_icon.gif from the course web site.

• A prominently displayed MyMDb logo; if you, like you may use the provided one mymdb.png.

• The standard W3C validator and JSLint buttons as links to the corresponding sites.

• A common stylistic theme, and an overall non-trivial number of styles, such as fonts, colors, borders, and
layout. As much as possible, set up your styles to look correct on a variety of systems.

• A form to type an actor's first/last name and search for matching actors in the database.

• A central area of results and info. In mymdb.php this area contains content of your choice, including at
least one image of Kevin Bacon (or your central actor) and text about the site. Be creative! In search.php
this area contains the actor's movies and all movies in which the actor starred with Kevin Bacon.

• The search.php page should contain a link back to mymdb.php if the user wants to start over.

NOTE: With so much in common between the two pages, it is important to find ways to avoid redundancy.
You should use the PHP include function with a shared common file included by both pages.

Front Page, mymdb.php:

The initial page, mymdb.php, allows the user to search for actors to match against Kevin Bacon. A skeleton is on
the course web site; you may modify it in any way you like, subject to the constraints in this document. The form on
the page must contain two text boxes that allow the user to search for an actor by first/last name.

The end goal is to submit to search.php to show movie results for that actor, but it is possible that the name the
user types (such as "Will Smith") will match more than one actor. And some names match no one in the database.

To address this problem, you can instead contact an intermediate web service actorid.php provided by the
instructor to find out which actor matches a given name. You can use an Ajax request to contact this web service,
which accepts query parameters for the actor's first and/or last name. It returns output in XML format representing
the actor(s) who match that name. The information flow is roughly the following:

1. mymdb.php User types a first/last name into the form and clicks the "go" button.
2. bacon.js JavaScript code creates an Ajax request to look up the actor ID for this actor.
3. actorid.php Looks up the actor(s) with that first/last name and outputs them as XML.
4. bacon.js Processes the XML that comes back, to discover the proper actor ID.
5. bacon.js Instructs mymdb.php to submit its form to search.php using the actor ID found.
6. search.php Shows the movie results for the given actor.

You don't need to use our web service if you'd rather write that functionality yourself. But either way, your page
needs to find some way to map a name (or partial name) to a single unique actor.

Form submit issues: If your "go" button is a submit button inside a form tag, any click on it will by default submit
the form. You may not want this to happen, if your form needs to do an intermediate Ajax lookup for an actor's ID
before the form is to be submitted. If so, you should listen for the form's submit event and stop that event so that
it doesn't happen when you don't want it to. Your JavaScript code can manually submit the form when you are ready
by calling .submit(); on the DOM object representing the form tag.

The web service actorid.php is described in more detail on the next page.

Actor ID Web Service, actorid.php (provided by instructor):

parameter name value

 first_name actor's first name (or partial first name) as a string, such as "William"

 last_name actor's last name (or partial first name) as a string, such as "Shatner"

The provided actorid.php maps names to IDs. For example, to search for partial names "ad" and "pitt":

https://webster.cs.washington.edu/cse190m/homework/hw9/actorid.php?first_name=ad&last_name=pitt

This query would return the following XML output. Notice that it contains the actor ID:

<actor id="376249" first_name="Brad" last_name="Pitt" appearances="59" />

The service issues a 404 error if no actor is found. By default, the service queries imdb_small. To make it query the
full imdb database, pass an additional query parameter named imdb set to any value. If you want to return all the
actors that matched a given name rather than just the first, pass a query parameter named all set to any value.

https://webster.cs.washington.edu/cse190m/homework/hw9/actorid.php?
first_name=ad&last_name=pitt&imdb=true&all=true

<actors count="3">
 <actor id="376249" first_name="Brad" last_name="Pitt" appearances="59" />
 <actor id="755520" first_name="Adelaide" last_name="Pittaluga" appearances="1" />
 <actor id="782869" first_name="Nadia" last_name="Scarpitta" appearances="4" />
</actors>

Movie Search Page, search.php:

The search.php page performs two queries on the imdb database on Webster to show a given actor's movies. Query
the database using PHP's mysql_ functions. Connect to the database using your UW NetID as your user name, and
the MySQL password that was emailed to you. (If you lost your password, email us.)

To help us with grading, please use the following standard query parameter names if you pass these kinds of
values. Your search.php doesn't have to accept all of these parameters; but use these names if you do accept them.

• actor_id for an actor's ID
• first_name for an actor's first name

• last_name for an actor's last name
• full_name for an actor's full name

The database has the following relevant tables. (The roles table connects actors to movies.)

table columns

 actors id, first_name, last_name, gender

 movies id, name, year

 roles actor_id, movie_id, role

Your page performs the following two queries. For each query, you must use a join between several database tables.

1. List of all the actor's movies: A query to find a complete list of movies in which the actor has performed,
showing them in an HTML table. You may assume that any actor in the actors table has been in at least one movie.

Hint: Join actors, movies, and roles; retain rows where IDs from the tables (actor ID, movie ID) match each other
and the name/ID of your actor. Our solution joins 3 tables in the FROM clause and has one test in its WHERE clause.

2. List of movies with this actor and Kevin Bacon: A query to find all movies in which the actor performed with
Kevin Bacon. These movies should be displayed as a second HTML table, with the same styling as the first. This is
the hard query and should be done last. If the actor has not been in any movies with Kevin Bacon, don't show a
table, and instead show a message such as, "Borat Sagdiyev wasn't in any films with Kevin Bacon."

This query is bigger and tougher because you must link a pair of performances, one by the submitted actor and one
by Kevin Bacon, that occurred in the same film. Do not directly write any actor's ID number anywhere in your PHP

code, not even Kevin Bacon's. For example, don't write a line like:
$bacon_id = 22591; # Kevin Bacon's actor id (BAD, don't do this)

Hint: You must join a pair of actors (yours and Bacon), a pair of roles that match those actors, and a movie that
matches those two roles. Our query joins 5 tables in the FROM clause and contains 3 conditions in its WHERE clause.

The data in both tables should be sorted by year in descending order, breaking
ties by sorting by movie title in ascending order. The tables have three columns:
A number starting at 1; the title; and the year. The columns must have styled
headings, such as bolded. The rows must have alternating background
colors, called "zebra striping." (Use PHP to apply styles to alternating rows.)

It is not acceptable to perform query filtering in PHP. Your SQL queries must filter the data down to only the
relevant rows and columns. For example, a bad algorithm would be to write a query to fetch all of the actor's
movies, then another query to fetch all of Bacon's movies, then use PHP to loop over the two looking for matches.
Each of the two major operations described previously should be done with a single SQL query to the database.

The behavior of the page is undefined if the actor being searched for is Kevin Bacon himself.

Developing Your Program:

Because the database is large and shared by all students, a bad query can hurt performance for everyone. We have a
smaller database imdb_small with fewer records. While testing, please use that database and not the full imdb.
When you think your code works, switch your PHP and/or JavaScript code to refer to imdb. We reserve the right to
post a "wall of shame" on the course web site. If you clog the server, you're going on the wall!

Use the MySQL console to develop your queries before writing PHP SQL
code. Example test actor IDs are 376249 (Brad Pitt) or 770247 (Julia Roberts).
If your query takes too long, press Ctrl-C to abort it.

Test the results returned by PHP mysql_ functions to spot mistakes. The
functions return FALSE if they fail. Print your SQL queries while debugging to
see the actual query being made. Many PHP SQL bugs come from improper
SQL query syntax, such as missing quotes, improperly inserted variables, etc.

Implementation and Grading:

Submit your work from the course web site. For reference, our search.php contains roughly 95 lines (65
"substantive"); we have roughly 90 lines (60 substantive) of common shared code; our mymdb.php is very short,
only around 15 lines; our bacon.js is roughly 50 lines (35 substantive); and bacon.css is 90 lines (57 substantive).

Your HTML (including PHP output) should pass the W3C XHTML validator. Your CSS code should pass the W3C
CSS validator and should avoid redundant or poorly written rules. Your JavaScript code should pass the JSLint tool.

Your code should follow style guidelines similar to those on our past homework specs. Minimize redundant
HTML/PHP code. Use functions and include files to break up code. Avoid global variables. Place descriptive
comments at the top of each file, each function, and on complex code. Also place a comment next to every single
SQL query you perform that explains what that query is searching for. Use parameters and return values properly.

For full credit, you must write your JS code using unobtrusive JavaScript, so that no JavaScript code, onclick
handlers, etc. are embedded into the XHTML code. Properly use the XHTML DOM to manipulate page content.

Show proper separation of content, presentation, and behavior between HTML, CSS, and JS/PHP. As much as
possible, your JS code should use styles and classes from CSS rather than manually setting style properties in the JS.

Format your code similarly to the examples from class. Properly use whitespace and indentation. Use good
variable and method names. Avoid lines of code more than 100 characters wide.

Do not place a solution to this assignment on a public web site. Upload your files to the Webster server at:

https://webster.cs.washington.edu/your_uwnetid/hw9/

© Copyright Marty Stepp / Jessica Miller, licensed under Creative Commons Attribution 2.5 License.

	University of Washington, CSE 190 M
Homework Assignment 9: Kevin Bacon
	Background Information:
	Appearance Constraints (both pages):
	Front Page, mymdb.php:
	Actor ID Web Service, actorid.php (provided by instructor):
	Movie Search Page, search.php:
	Developing Your Program:
	Implementation and Grading:

