
Copyright 2010 by Pearson Education

Building Java Programs

Inheritance

reading: 9.1 – 9.2

Copyright 2010 by Pearson Education
2

An Employee class
// A class to represent employees in general (20-page manual).
public class Employee {
 public int getHours() {
 return 40; // works 40 hours / week
 }

 public double getSalary() {
 return 40000.0; // $40,000.00 / year
 }

 public int getVacationDays() {
 return 10; // 2 weeks' paid vacation
 }

 public String getVacationForm() {
 return "yellow"; // use the yellow form
 }
}

�  Exercise: Implement class Secretary, based on the previous
employee regulations. (Secretaries can take dictation.)

Copyright 2010 by Pearson Education
3

Redundant Secretary class
// A redundant class to represent secretaries.
public class Secretary {
 public int getHours() {
 return 40; // works 40 hours / week
 }

 public double getSalary() {
 return 40000.0; // $40,000.00 / year
 }

 public int getVacationDays() {
 return 10; // 2 weeks' paid vacation
 }

 public String getVacationForm() {
 return "yellow"; // use the yellow form
 }

 public void takeDictation(String text) {
 System.out.println("Taking dictation of text: " + text);
 }
}

Copyright 2010 by Pearson Education
4

Desire for code-sharing
�  takeDictation is the only unique behavior in Secretary.

�  We'd like to be able to say:

// A class to represent secretaries.
public class Secretary {
 copy all the contents from the Employee class;

 public void takeDictation(String text) {
 System.out.println("Taking dictation of text: " + text);
 }
}

Copyright 2010 by Pearson Education
5

Inheritance
�  inheritance: A way to form new classes based on existing

classes, taking on their attributes/behavior.
�  a way to group related classes
�  a way to share code between two or more classes

�  One class can extend another, absorbing its data/behavior.
�  superclass: The parent class that is being extended.
�  subclass: The child class that extends the superclass and

inherits its behavior.
�  Subclass gets a copy of every field and method from superclass

Copyright 2010 by Pearson Education
6

Inheritance syntax
 public class name extends superclass {

�  Example:

 public class Secretary extends Employee {
 ...

 }

�  By extending Employee, each Secretary object now:
�  receives a getHours, getSalary, getVacationDays, and
getVacationForm method automatically

�  can be treated as an Employee by client code (seen later)

Copyright 2010 by Pearson Education
7

Improved Secretary code
// A class to represent secretaries.
public class Secretary extends Employee {
 public void takeDictation(String text) {
 System.out.println("Taking dictation of text: " + text);
 }
}

�  Now we only write the parts unique to each type.
�  Secretary inherits getHours, getSalary, getVacationDays,

and getVacationForm methods from Employee.
�  Secretary adds the takeDictation method.

Copyright 2010 by Pearson Education
8

Implementing Lawyer
�  Consider the following lawyer regulations:

�  Lawyers who get an extra week of paid vacation (a total of 3).
�  Lawyers use a pink form when applying for vacation leave.
�  Lawyers have some unique behavior: they know how to sue.

�  Problem: We want lawyers to inherit most behavior from
employee, but we want to replace parts with new behavior.

Copyright 2010 by Pearson Education
9

Overriding methods
�  override: To write a new version of a method in a subclass

that replaces the superclass's version.
�  No special syntax required to override a superclass method.

Just write a new version of it in the subclass.

 public class Lawyer extends Employee {
 // overrides getVacationForm method in Employee class
 public String getVacationForm() {
 return "pink";
 }
 ...
 }

�  Exercise: Complete the Lawyer class.
�  (3 weeks vacation, pink vacation form, can sue)

Copyright 2010 by Pearson Education
10

Lawyer class
// A class to represent lawyers.
public class Lawyer extends Employee {
 // overrides getVacationForm from Employee class
 public String getVacationForm() {
 return "pink";
 }

 // overrides getVacationDays from Employee class
 public int getVacationDays() {
 return 15; // 3 weeks vacation
 }

 public void sue() {
 System.out.println("I'll see you in court!");
 }
}

�  Exercise: Complete the Marketer class. Marketers make
$10,000 extra ($50,000 total) and know how to advertise.

Copyright 2010 by Pearson Education
11

Marketer class
// A class to represent marketers.
public class Marketer extends Employee {
 public void advertise() {
 System.out.println("Act now while supplies last!");
 }

 public double getSalary() {
 return 50000.0; // $50,000.00 / year
 }
}

Copyright 2010 by Pearson Education
12

Levels of inheritance
�  Multiple levels of inheritance in a hierarchy are allowed.

�  Example: A legal secretary is the same as a regular secretary
but makes more money ($45,000) and can file legal briefs.

 public class LegalSecretary extends Secretary {
 ...

 }

�  Exercise: Complete the LegalSecretary class.

Copyright 2010 by Pearson Education
13

LegalSecretary class
// A class to represent legal secretaries.
public class LegalSecretary extends Secretary {
 public void fileLegalBriefs() {
 System.out.println("I could file all day!");
 }

 public double getSalary() {
 return 45000.0; // $45,000.00 / year
 }
}

Copyright 2010 by Pearson Education

Interacting with the
Superclass (super)

reading: 9.2

Copyright 2010 by Pearson Education
15

Changes to common behavior
�  Imagine a company-wide change affecting all employees.

Example: Everyone is given a $10,000 raise due to inflation.
�  The base employee salary is now $50,000.
�  Legal secretaries now make $55,000.
�  Marketers now make $60,000.

�  We must modify our code to reflect this policy change.

Copyright 2010 by Pearson Education
16

Modifying the superclass

// A class to represent employees in general (20-page manual).
public class Employee {
 public int getHours() {
 return 40; // works 40 hours / week
 }

 public double getSalary() {
 return 50000.0; // $50,000.00 / year
 }

 ...
}

�  Are we finished?

�  The Employee subclasses are still incorrect.
�  They have overridden getSalary to return other values.

Copyright 2010 by Pearson Education
17

An unsatisfactory solution
public class LegalSecretary extends Secretary {
 public double getSalary() {
 return 55000.0;
 }
 ...
}

public class Marketer extends Employee {
 public double getSalary() {
 return 60000.0;
 }
 ...
}

�  Problem: The subclasses' salaries are based on the Employee
salary, but the getSalary code does not reflect this.

Copyright 2010 by Pearson Education
18

Calling overridden methods
�  Subclasses can call overridden methods with super

 super.method(parameters)

�  Example:

 public class LegalSecretary extends Secretary {
 public double getSalary() {
 double baseSalary = super.getSalary();
 return baseSalary + 5000.0;
 }
 ...
 }

�  Exercise: Modify Lawyer and Marketer to use super.

Copyright 2010 by Pearson Education
19

Improved subclasses
public class Lawyer extends Employee {
 public String getVacationForm() {
 return "pink";
 }

 public int getVacationDays() {
 return super.getVacationDays() + 5;
 }

 public void sue() {
 System.out.println("I'll see you in court!");
 }
}

public class Marketer extends Employee {
 public void advertise() {
 System.out.println("Act now while supplies last!");
 }

 public double getSalary() {
 return super.getSalary() + 10000.0;
 }
}

Copyright 2010 by Pearson Education
20

Inheritance and constructors
�  Imagine that we want to give employees more vacation

days the longer they've been with the company.
�  For each year worked, we'll award 2 additional vacation days.

�  When an Employee object is constructed, we'll pass in the
number of years the person has been with the company.

�  This will require us to modify our Employee class and add
some new state and behavior.

�  Exercise: Make necessary modifications to the Employee class.

Copyright 2010 by Pearson Education
21

Modified Employee class
public class Employee {
 private int years;

 public Employee(int initialYears) {
 years = initialYears;
 }

 public int getHours() {
 return 40;
 }

 public double getSalary() {
 return 50000.0;
 }

 public int getVacationDays() {
 return 10 + 2 * years;
 }

 public String getVacationForm() {
 return "yellow";
 }
}

Copyright 2010 by Pearson Education
22

Problem with constructors
�  Now that we've added the constructor to the Employee

class, our subclasses do not compile. The error:

Lawyer.java:2: cannot find symbol
symbol : constructor Employee()
location: class Employee
public class Lawyer extends Employee {
 ^

�  The short explanation: Once we write a constructor (that

requires parameters) in the superclass, we must now write
constructors for our employee subclasses as well.

�  The long explanation: (next slide)

Copyright 2010 by Pearson Education
23

The detailed explanation
�  Constructors are not inherited.

�  Subclasses don't inherit the Employee(int) constructor.

�  Subclasses receive a default constructor that contains:

public Lawyer() {
 super(); // calls Employee() constructor
}

�  But our Employee(int) replaces the default Employee().
�  The subclasses' default constructors are now trying to call a

non-existent default Employee constructor.

Copyright 2010 by Pearson Education
24

Calling superclass constructor
 super(parameters);

�  Example:

 public class Lawyer extends Employee {
 public Lawyer(int years) {
 super(years); // calls Employee constructor
 }
 ...
 }

�  The super call must be the first statement in the constructor.

�  Exercise: Make a similar modification to the Marketer class.

Copyright 2010 by Pearson Education
25

Inheritance and fields
�  Try to give lawyers $5000 for each year at the company:

public class Lawyer extends Employee {
 ...
 public double getSalary() {
 return super.getSalary() + 5000 * years;
 }
 ...
}

�  Does not work; the error is the following:
Lawyer.java:7: years has private access in Employee
 return super.getSalary() + 5000 * years;
 ^

�  Private fields cannot be directly accessed from subclasses.
�  One reason: So that subclassing can't break encapsulation.
�  How can we get around this limitation?

Copyright 2010 by Pearson Education
26

Improved Employee code
Add an accessor for any field needed by the subclass.

public class Employee {
 private int years;

 public Employee(int initialYears) {
 years = initialYears;
 }

 public int getYears() {
 return years;
 }
 ...
}

public class Lawyer extends Employee {
 public Lawyer(int years) {
 super(years);
 }

 public double getSalary() {
 return super.getSalary() + 5000 * getYears();
 }
 ...
}

