Building Java Programs

Inheritance

reading: 9.1 - 9.2

e

~ Copyright 2010 by Pearson Education

 —
An Employee class

// A class to represent employees in general (20-page manual).
public class Employee {
3B e A K oA w0 7o ol e B W AR
return 40; // works 40 hours / week

}

public double getSalary () {
et e N e // $40,000.00 / year

}

public int getVacationDays () {
refurn oy // 2 weeks' paid vacation

}

oR 08 o BT eI A At Y 010 i o { < R Tl Ve Nl 1 A A o 0% LA e A1) RV
return "yellow"; // use the yellow form

}

» Exercise: Implement class secretary, based on the previous
employee requlations. (Secretaries can take dictation.)

]

~ Copyright 2010 by Pearson Education

e

 —
Redundant Secretary class

// A redundant class to represent secretaries.
public class Secretary {
oRol oY M ek M ok sio r=Viul fe) bhiavs 1 A K |
return 40; // works 40 hours / week

}

public double getSalary () {
et e N e // $40,000.00 / year

}

public int getVacationDays () {
refurn oy // 2 weeks' paid vacation

}

oR 08 o BT eI A At Y 010 i o { < R Tl Ve Nl 1 A A o 0% LA e A1) RV
return "yellow"; // use the yellow form

}

public void takeDictation(String text) {
System.out.println ("Taking dictation of text: " + text);

}

~ Copyright 2010 by Pearson Education

Desire for code-sharing

* takeDictation is the only unique behavior in Secretary.

» We'd like to be able to say:

// A class to represent secretaries.

public class Secretary {
copy all the contents from the Employee class;

public void takeDictation(String text) {
System.out.println ("Taking dictation of text: " + text);

}

" Copyright 2010 by Pearson Education

Inheritance

* inheritance: A way to form new classes based on existing
classes, taking on their attributes/behavior.

* a way to group related classes
* a way to share code between two or more classes

e —

* One class can extend another, absorbing its data/behavior.
» superclass: The parent class that is being extended.

» subclass: The child class that extends the superclass and
inherits its behavior.

« Subclass gets a copy of every field and method from superclass

Copyright 2010 by Pearson Education

s

g — : “
Inheritance syntax

public class name extends superclass {

 Example:

public class Secretary extends Employee ({

* By extending Employee, each Secretary object now:

* receives a getHours, getSalary, getVacationDays, and
getVacationForm method automatically

e can be treated as an Employee by client code (seen later)

Copyright 2010 by Pearson Education

e

Improved Secretary code

// A class to represent secretaries.
public class Secretary extends Employee {
public void takeDictation(String text) {
SRIA A Th Y oY A A G A RA N A Y A W AW oA N 0O TG B Y o = ST AT R VAT AT R o A WA s A) S5 G e B

}

* Now we only write the parts unique to each type.

e Secretary inherits getHours, getSalary, getVacationDays,
and getVacationForm methods from Employee.

* Secretary adds the takeDictation method.

_ Copyright 2010 by Pearson Education

//M/J ; :
Implementing Lawyer

e Consider the following lawyer regulations:
» Lawyers who get an extra week of paid vacation (a total of 3).
» Lawyers use a pink form when applying for vacation leave.
» Lawyers have some unique behavior: they know how to sue.

* Problem: We want lawyers to inherit most behavior from
employee, but we want to replace parts with new behavior.

— 8
Copyright 2010 by Pearson Education

Overriding methods

* override: To write a new version of a method in a subclass
that replaces the superclass's version.

» No special syntax required to override a superclass method.
Just write a new version of it in the subclass.

public class Lawyer extends Employee {
// overrides getVacationForm method in Employee class
public String getVacationForm() ({
return "pink";

}

» Exercise: Complete the Lawyer class.
- (3 weeks vacation, pink vacation form, can sue)

Copyright 2010 by Pearson Education

 —
Lawyer class

// A class to represent lawyers.
public class Lawyer extends Employee ({
// overrides getVacationForm from Employee class

VS BN e TR SN E R wiy P B W R LA O Ve M MO B S g o
return "pink";

}

// overrides getVacationDays from Employee class

Jea ¥ ME M e b an wie Pon et Ve s N sy au B RVas M AU
6 b R AN S O // 3 weeks vacation

}

[SNBH ¥ MeAVAT dom Ve RS BT S A VA
System.out.println("I'll see you in court!");

}

o Exercise: Complete the Marketer class. Marketers make
$10,000 extra ($50,000 total) and know how to advertise.

10

“

~ " Copyright 2010 by Pearson Education

R A Y I AT

 m—

Marketer class

// A class to represent marketers.
public class Marketer extends Employee ({
public void advertise () {
System.out.println ("Act now while supplies last!");

}

public double getSalary () {
e e 08 0 // $50,000.00 / year

}

B AR
__ Copyright 2010 by Pearson Education

s

//7 - “ . -
Levels of inheritance

e Multiple levels of inheritance in a hierarchy are allowed.

« Example: A legal secretary is the same as a regular secretary
but makes more money ($45,000) and can file legal briefs.

public class LegalSecretary extends Secretary ({

» Exercise: Complete the LegalSecretary class.

Copyright 2010 by Pearson Education

-
LegalSecretary class

// A class to represent legal secretaries.
public class LegalSecretary extends Secretary {
public void filelegalBriefs () {
SRVAS R The M) DA WA o A A A Y KA W L A MR U RARY 6 PR s R A S Wy VYA Vi o S

}

public double getSalary () {
e g U B S Y B // $45,000.00 / year

}

9

m%;ggpyright 2010 by Pearson Education

——————

Interacting with the
Superclass (super)

reading: 9.2

e —

Changes to common behavior

* Imagine a company-wide change affecting all employees.

Example: Everyone is given a $10,000 raise due to inflation.
 The base employee salary is now $50,000.

» Legal secretaries now make $55,000.

» Marketers now make $60,000.

* We must modify our code to reflect this policy change.

Copyright 2010 by Pearson Education

55

e

Modifying the superclass

// A class to represent employees in general (20-page manual) .
public class Employee {
publiieyirnbygebHouwrs (v
return 40; // works 40 hours / week

}

public double getSalary () {
return 50000.0; // $50,000.00 / year

}
}

 Are we finished?

* The Employee subclasses are still incorrect.
» They have overridden getsSalary to return other values.

= 16

" Copyright 2010 by Pearson Education

e

An unsatisfactory solution

public class LegalSecretary extends Secretary {
public double getSalary () {
return 55000.0;

}

public class Marketer extends Employee ({
public double getSalary () {
return 60000.0;

}

» Problem: The subclasses' salaries are based on the Employee
salary, but the getsalary code does not reflect this.

— 17
: Copyright 2010 by Pearson Education

e

= .
Calling overridden methods
e Subclasses can call overridden methods with super

super . method (parameters)

 Example:

public class LegalSecretary extends Secretary {
pulbiviandonblievgetSamhvawarin
double baseSalary = super.getSalary();
return baseSalary + 5000.0;

o Exercise: Modify Lawyer and Marketer to use super.

£ 18
: Copyright 2010 by Pearson Education

e

Improved subclasses

public class Lawyer extends Employee ({
public String getVacationForm() {
) BN YR A NNV Ol R Y

}

public int getVacationDays () {
return super.getVacationDays() + 5;

}

I B AN A N D AR S Y AR
System.out.println("I'll see you in court!");

}
}

public class Marketer extends Employee {
public void advertise() {
System.out.println("Act now while supplies last!");

}

public double getSalary () {
return super.getSalary() + 10000.0;

}

53

~ Copyright 2010 by Pearson Education

- aanmll

—

Inheritance and constructors

* Imagine that we want to give employees more vacation
days the longer they've been with the company.

» For each year worked, we'll award 2 additional vacation days.

« When an Employee object is constructed, we'll pass in the
number of years the person has been with the company.

e This will require us to modify our Employee class and add
some new state and behavior.

» Exercise: Make necessary modifications to the Employee class.

k) 20
: Copyright 2010 by Pearson Education

e

Modified Employee class

public class Employee {
private int years;

public Employee (int initialYears) {
years = initialYears;

}

public int getHours () {
return 40;

}

publicrdoublevgetSalaryiy
return 50000.0;
}

P resminErgetVacarionbaaiied
return 10 + 2 * years;

}

public String getVacationForm() {
return "yellow";

2k

~ Copyright 2010 by Pearson Education

——

g

Problem with constructors

* Now that we've added the constructor to the Employee
class, our subclasses do not compile. The error:

Wiy M na eh s e el U Re s i e N e s e vl e T
symbol s constructor Employee ()
location: class Employee

public class Lawyer extends Employee {

A

» The short explanation: Once we write a constructor (that
requires parameters) in the superclass, we must now write
constructors for our employee subclasses as well.

 The long explanation: (next slide)

i Copyright 2010 by Pearson Education

2

g - _ : .
The detailed explanation

» Constructors are not inherited.
o Subclasses don't inherit the Employee (int) constructor.

e Subclasses receive a default constructor that contains:

public Lawyer () {
super () ; // calls Employee () constructor

e But our Employee (int) replaces the default Employee ().

» The subclasses' default constructors are now trying to call a
non-existent default Employee constructor.

— 23
Copyright 2010 by Pearson Education

e

e
Calling superclass constructor

super (parameters) ;

» Example:
public class Lawyer extends Employee {
public Lawyer (int years) {
super (years); // calls Employee constructor

}

}

» The super call must be the first statement in the constructor.

o Exercise: Make a similar modification to the Marketer class.

. Copyright 2010 by Pearson Education

——

Inheritance and fields

e Try to give lawyers $5000 for each year at the company:

public class Lawyer extends Employee {

g

public double getSalary () {
return super.getSalary() + 5000 * years;

}

)
* Does not work; the error is the following:

Lawyer.java:/7: years has private access 1n Employee
return super.getSalary() + 5000 * years;

A

* Private fields cannot be directly accessed from subclasses.
 One reason: So that subclassing can't break encapsulation.
« How can we get around this limitation?

k) 25
: Copyright 2010 by Pearson Education

Improved Employee code

Add an accessor for any field needed by the subclass.

public class Employee {
private int years;

public Employee(int initialYears) {
years = 1nitialYears;

}

public int getYears() ({
return years;
}

}

public class Lawyer extends Employee ({
public Lawyer (int years) {
super (years);
}

A A RN B e S Y B et
return super.getSalary() + 5000 * getYears():
}

. Copyright 2010 by Pearson Education

