Building Java Programs

Constructors, Encapsulation, this

reading: 8.2 - 8.3, 8.5 - 8.6

Copyright 2010 by Pearson Education

L ———

Object initialization:
constructors

reading: 8.3

e

Initializing objects

e Currently it takes 3 lines to create a Point and initialize it:

Point pl =inew Pointit)e
P = a
p.y = 8; // tedious

» We'd rather specify the fields' initial values at the start:

Point p = new Point (3, 8); // desired; doesn't work (yet)

 We are able to this with most types of objects in Java.

3
Copyright 2010 by Pearson Education

e —

Constructors

e constructor: Initializes the state of new objects.

public type (parameters) {
statements;

}

* runs when the client uses the new keyword

* no return type is specified;
it implicitly "returns” the new object being created

equivalent to Python’s init

If a class has no constructor, Java gives it a default constructor
with no parameters that sets all fields to O.

Copyright 2010 by Pearson Education

e

Constructor example

JBUYY ey el el DoV Ro v S e YA s
T e
VRS

// Constructs a Point at the given x/y location.
public Point (int initialX, int initialY) {
initialX;

initialyY;

X
y

publ e wwordi T ranstatevint adx s anfaduy
S e

i O

}

Copyright 2010 by Pearson Education

e

= :
Client code, version 3

S e S I M P By
pubile v siEarTevivesdema it S Eriaai il aras)

// create two Point objects

Point pl = new Point (5, 2);

Point p2 = new Point (4, 3);

// print each point

Shvichallaionbl iy euah nh okl 1 0 11 ikl oM LI R o R R L e e o e T
e = e Y B o) O e i 0 M s e e e

// move p2 and then print it again
p2.translate (2, 4);

SRS Shl el bl el o b by o s okl Bl o A I Bl o A i e o
}
}
OUTPUT:
joRiI R ot
B2 gy
p2: (6, 7)
6

Copyright 2010 by Pearson Education

e

e —

—

Common constructor bugs

1. Re-declaring fields as local variables ("shadowing"):

o bR oY el Yo Y Ve A W it sh s Y A e e 8 O ety M A e My M e W) O ey M
v o chi e M iy e W N Y)
% o b Ve s A

}

e This declares local variables with the same name as the fields,
rather than storing values into the fields. The fields remain O.

2. Accidentally giving the constructor a return type:
pubimevwrord “Pon b i ok et e o R e e ey
e s Rt b
Ve oS
}
» This is actually not a constructor, but a method named point

7
Copyright 2010 by Pearson Education

e

.
Multiple constructors

* A class can have multiple constructors.
» Each one must accept a unique set of parameters.

* Exercise: Write a Point constructor with no parameters
that initializes the point to (0, 0).

// Constructs a new point at (0, 0).
pubir e Pornt (g

x = 0;

Vi O

Copyright 2010 by Pearson Education

Encapsulation

reading: 8.5 - 8.6

Copyright 2010 by Pearson Education

Abstraction

- AN x64 PROCESSR 16 SCREAMING ALONG AT BLUONS OF
CYCLES PER SECOND T0 RUN THE XNU KERNEL, WHICH 1S

Don't need FRANTICALLY WORKING THROUGH ALL THE: F0SIX-SPECIFED
to know — ARSTRACTION TO CREATE THE DRQUIN SYSTEM UNDERIYING

this

05 X, WHICH INTORN IS STRAINING ITSELF 0 RN FIREROX
AND IT5 GECKO RENDERER, WHICH (REATES A RASH OBTECT
— | WHICH RENDERS TOZENS OF VIDED FRANMES EVERY SECOND

BECAUSE I WANTED TO SEE A CAT
JUMP INTO A BOX AND FALL OVER.

O l X 1A GOD

Copyright 2010 by Pearson Education

Can focus
on this!!

10

Encapsulation

 encapsulation: Hiding implementation details of an
object from its clients.

» Encapsulation provides abstraction.
« separates external view (behavior) from internal view (state)
» Encapsulation protects the integrity of an object's data.

3 k83
S22k

Qo
Qn o3 ama

40310 Lt
/ AUNO OUTPUT .
— Lhaa Measure=jm

Resistor Voltage .82
Here Here !

Copyright 2010 by Pearson Education

i

Private fields

* A field can be declared private.
* No code outside the class can access or change it.

—

private type name;

 Examples:

private int 1id;
private String name;

* Client code sees an error when accessing private fields:

PointMain.java:11l: x has private access in Point
Sysktem ouk prinkln (pl as (e Pl Y

A

Copyright 2010 by Pearson Education

531!

e

Accessing private state

* We can provide methods to get and/or set a field's value:

// A "read-only" access to the x field ("accessor")

PUbI e T e e
IBeEieRine e

}

// Allows clients to change the x field ("mutator")
public void setX(int newX) {
X = newX;

e Client code will look more like this:

S AVAT AN Y ALY v B MRy & e A A AR Wi A A S A SR) o 8 AT =% o, O B B s R R o o M Ve (=2 i o A IO A M
pl.setX(14);

13
Copyright 2010 by Pearson Education

e

- aanmll

—

Benefits of encapsulation

Provides abstraction between an object and its clients.

Protects an object from unwanted access by clients.

» A bank app forbids a client to change an Account's balance.

Allows you to change the class implementation.

 Point could be rewritten to use polar coordinates
(radius r, angle 8), but with the same methods. o

(r.8)

Allows you to constrain objects' state (invariants).
« Example: Only allow pPoints with non-negative coordinates.

Copyright 2010 by Pearson Education

\

14

e

Point class, version 4

// A Point object represents an (x, y) location.
pulibrevelass BT

private int x;

private int y;

Y ERUE O B X o) o T B s A 14 9 0 w4 0 i s 1 0, AP0 Y 0 v 0 o Y 1 o 49 2 |

X = initialX;
y = initialY;
}
public double distanceFromOrigin () {

N P A LI N B PN L A A I O I I S
}

public int getX() {
return x;
}

public int getY¥ () {
return y;
}

public void setLocation(int newX, int newY) {
X = newX;
S NS

}

public void translate(int dx, int dy) {
X SRR AN O D G
y =y + dy;

15
Copyright 2010 by Pearson Education

e

 —
Client code, version 4

public class PointMain4d ({
public static void main (String[] args) {
// create two Point objects
A AR AN AN AN AN L A e A AN A A A A
Point p2 = new Point (4, 3);

// print each point
System.out.println("pl: + pl);
SRIAS AW =0 P 0F b Ui o Ry Ml & 0 Y (44 0 aNaida sy 0 7) 1%

// move p2 and then print it again
p2.translate (2, 4);
TN) 11400 0% D AR Qo oy A 1y 0 A R A Al @ A0t nef @ 57200 M

}

OUTPUT:

P2
SRR MV ISR)
| SRy i Ul SRR)

16
Copyright 2010 by Pearson Education

The keyword this

reading: 8.7

this
* this : A reference to the implicit parameter.

o implicit parameter: object on which a method is called
o Equivalent to Python’s self

e Syntax for using this:

» To refer to a field:
this.field

» To call a method:
this.method (parameters) ;

e To call a constructor from another constructor:
this (parameters) ;

18
Copyright 2010 by Pearson Education

e _______
Variable names and scope

e Usually it is illegal to have two variables in the same scope
with the same name.

pubisevclass "Poangid
T
i g A

public void setLocation (int newX, int newY) ({
X = newX;
Yy = newy;

}

» The parameters to setLocation are named newX and newY to
be distinct from the object's fields x and y.

19
Copyright 2010 by Pearson Education

s

Variable shadowing

* An instance method parameter can have the same name as
one of the object's fields:

// this is legal

public void setLocation(int x, 1int y) {

}

» Fields x and y are shadowed by parameters with same names.
 Any setLocation code that refers to x or y will use the
parameter, not the field.

20

Copyright 2010 by Pearson Education

e

Avoiding shadowing w/ this
pubivEevselag SR omr

private int x;
private int y;

public void setlLocation(int x, 1int y) {
this.x = x;
this.y = y;

e Inside the setLocation method,

« When this.x is seen, the field x is used.
» When x is seen, the parameter x is used.

2
Copyright 2010 by Pearson Education

Inheritance

reading: 9.1

Copyright 2010 by Pearson Education

//J/i J - -
The software crisis

* software engineering: The practice of developing,
designing, documenting, testing large computer programs.

e Large-scale projects face many issues:
» programmers working together

getting code finished on time

avoiding redundant code

finding and fixing bugs

maintaining, reusing existing code

- code reuse: The practice of writing program code once
and using it in many contexts.

29

Copyright 2010 by Pearson Education

e

/_
Law firm employee analogy

e common rules: hours, vacation, benefits, regulations ...

» all employees attend a common orientation to learn general
company rules

» each employee receives a 20-page manual of common rules

* each subdivision also has specific rules:
» employee receives a smaller (1-3 page) manual of these rules

» smaller manual adds some new rules and also changes some
rules from the large manual

Employee
20-page manual
PN

Lawyer Secretary Marketer
2-page manual 1-page manual 3-page manual

T

LegalSecretary
1-page manual 24

Copyright 2010 by Pearson Education

/W

geparating behavior

* Why not just have a 22 page Lawyer manual, a 21-page
Secretary manual, a 23-page Marketer manual, etc.?

e —

* Some advantages of the separate manuals:
 maintenance: Only one update if a common rule changes.
» locality: Quick discovery of all rules specific to lawyers.

e Some key ideas from this example:
» General rules are useful (the 20-page manual).

» Specific rules that may override general ones are also useful.

Copyright 2010 by Pearson Education

29

- aanmll

Is-a relationships, hierarchies

* is-a relationship: A hierarchical connection where one
category can be treated as a specialized version of another.

» every marketer is an employee
» every legal secretary is a secretary

* inheritance hierarchy: A set of classes connected by is-a
relationships that can share common code.

Closed Figure Open Figurs

“

Copyright 2010 by Pearson Education

26

e —

Employee regulations

* Consider the following employee regulations:
» Employees work 40 hours / week.

« Employees make $40,000 per year, except legal secretaries who
make $5,000 extra per year ($45,000 total), and marketers who
make $10,000 extra per year ($50,000 total).

« Employees have 2 weeks of paid vacation leave per year, except
lawyers who get an extra week (a total of 3).

» Employees should use a yellow form to apply for leave, except for
lawyers who use a pink form.

g —

* Each type of employee has some unique behavior:
» Lawyers know how to sue.
» Marketers know how to advertise.
» Secretaries know how to take dictation.
» Legal secretaries know how to prepare legal documents.

Copyright 2010 by Pearson Education

 —
An Employee class

// A class to represent employees in general (20-page manual).
public class Employee {
3B a M A K oA w0 7o ol e B W AR
return 40; // works 40 hours / week

}

public double getSalary () {
et e N e // $40,000.00 / year

}

public int getVacationDays () {
refurn oy // 2 weeks' paid vacation

}

0N 08 o BT eI A S At d 010 o (= R A Ve N) AW o 9% LA e A 1) RV
return "yellow"; // use the yellow form

}

» Exercise: Implement class secretary, based on the previous
employee requlations. (Secretaries can take dictation.)

28
Copyright 2010 by Pearson Education

e

 —
Redundant Secretary class

// A redundant class to represent secretaries.
public class Secretary {
oRol oY M ek M ok sio r=Viul fe) bhiavs 1 A K |
return 40; // works 40 hours / week

}

public double getSalary () {
et e N e // $40,000.00 / year

}

public int getVacationDays () {
refurn oy // 2 weeks' paid vacation

}

oR 08 o BT eI A At Y 010 i o { < R Tl Ve Nl 1 A A o 0% LA e A1) RV
return "yellow"; // use the yellow form

}

public void takeDictation(String text) {
System.out.println ("Taking dictation of text: " + text);

}

29
Copyright 2010 by Pearson Education

Desire for code-sharing

* takeDictation is the only unique behavior in Secretary.

» We'd like to be able to say:

// A class to represent secretaries.

public class Secretary {
copy all the contents from the Employee class;

public void takeDictation(String text) {
System.out.println ("Taking dictation of text: " + text);

}

30
Copyright 2010 by Pearson Education

Inheritance

* inheritance: A way to form new classes based on existing
classes, taking on their attributes/behavior.

* a way to group related classes
* a way to share code between two or more classes

e —

* One class can extend another, absorbing its data/behavior.
» superclass: The parent class that is being extended.

» subclass: The child class that extends the superclass and
inherits its behavior.

« Subclass gets a copy of every field and method from superclass

31
Copyright 2010 by Pearson Education

s

g — : “
Inheritance syntax

public class name extends superclass {

 Example:

public class Secretary extends Employee ({

* By extending Employee, each Secretary object now:

* receives a getHours, getSalary, getVacationDays, and
getVacationForm method automatically

e can be treated as an Employee by client code (seen later)

Copyright 2010 by Pearson Education

2

e

Improved Secretary code

// A class to represent secretaries.
public class Secretary extends Employee {
public void takeDictation(String text) {
SRIA A Th Y oY A A G A RA N A Y A W AW oA N 0O TG B Y o = ST AT R VAT AT R o A WA s A) S5 G e B

}

* Now we only write the parts unique to each type.

e Secretary inherits getHours, getSalary, getVacationDays,
and getVacationForm methods from Employee.

* Secretary adds the takeDictation method.

33
Copyright 2010 by Pearson Education

