
Copyright 2010 by Pearson Education
1

Copyright 2010 by Pearson Education

Building Java Programs

Arrays for Tallying; Text Processing; ArrayList

reading: 4.3, 7.6, 10.1

Copyright 2010 by Pearson Education
3

A multi-counter problem
�  Problem: Write a method mostFrequentDigit that returns

the digit value that occurs most frequently in a number.

�  Example: The number 669260267 contains:
 one 0, two 2s, four 6es, one 7, and one 9.

 mostFrequentDigit(669260267) returns 6.

�  If there is a tie, return the digit with the lower value.
 mostFrequentDigit(57135203) returns 3.

Copyright 2010 by Pearson Education
4

A multi-counter problem
�  We could declare 10 counter variables ...

 int counter0, counter1, counter2, counter3, counter4,

 counter5, counter6, counter7, counter8, counter9;

�  But a better solution is to use an array of size 10.
�  The element at index i will store the counter for digit value i.
�  Example for 669260267:

�  How do we build such an array? And how does it help?

index 0 1 2 3 4 5 6 7 8 9

value 1 0 2 0 0 0 4 1 0 1

Copyright 2010 by Pearson Education
5

Creating an array of tallies

 // assume n = 669260267
 int[] counts = new int[10];
 while (n > 0) {
 // pluck off a digit and add to proper counter
 int digit = n % 10;
 counts[digit]++;
 n = n / 10;
 }

index 0 1 2 3 4 5 6 7 8 9

value 1 0 2 0 0 0 4 1 0 0

Copyright 2010 by Pearson Education
6

Tally solution
// Returns the digit value that occurs most frequently in n.
// Breaks ties by choosing the smaller value.
public static int mostFrequentDigit(int n) {
 int[] counts = new int[10];
 while (n > 0) {
 int digit = n % 10; // pluck off a digit and tally it
 counts[digit]++;
 n = n / 10;
 }

 // find the most frequently occurring digit
 int bestIndex = 0;
 for (int i = 1; i < counts.length; i++) {
 if (counts[i] > counts[bestIndex]) {
 bestIndex = i;
 }
 }

 return bestIndex;
}

Copyright 2010 by Pearson Education
7

Section attendance question
�  Read a file of section attendance (see next slide):

yynyyynayayynyyyayanyyyaynayyayyanayyyanyayna
ayyanyyyyayanaayyanayyyananayayaynyayayynynya
yyayaynyyayyanynnyyyayyanayaynannnyyayyayayny

�  And produce the following output:

Section 1
Student points: [20, 16, 17, 14, 11]
Student grades: [100.0, 80.0, 85.0, 70.0, 55.0]

Section 2
Student points: [16, 19, 14, 14, 8]
Student grades: [80.0, 95.0, 70.0, 70.0, 40.0]

Section 3
Student points: [16, 15, 16, 18, 14]
Student grades: [80.0, 75.0, 80.0, 90.0, 70.0]

•  Students earn 3 points for each section attended up to 20.

Copyright 2010 by Pearson Education
8

�  Each line represents a section.
�  A line consists of 9 weeks' worth of data.

�  Each week has 5 characters because there are 5 students.
�  Within each week, each character represents one student.

�  a means the student was absent (+0 points)
�  n means they attended but didn't do the problems (+1 points)
�  y means they attended and did the problems (+3 points)

Section input file

yynyyynayayynyyyayanyyyaynayyayyanayyyanyayna

ayyanyyyyayanaayyanayyyananayayaynyayayynynya
yyayaynyyayyanynnyyyayyanayaynannnyyayyayayny

week 1 2 3 4 5 6 7 8 9

student 123451234512345123451234512345123451234512345

section 1
section 2
section 3

Copyright 2010 by Pearson Education
9

String traversals
�  The chars in a String can be accessed using the charAt method.

�  accepts an int index parameter and returns the char at that index

 String food = "cookie";
 char firstLetter = food.charAt(0); // 'c'

 System.out.println(firstLetter + " is for " + food);

�  You can use a for loop to print or examine each character.

 String major = "CSE";
 for (int i = 0; i < major.length(); i++) { // output:
 char c = major.charAt(i); // C
 System.out.println(c); // S
 } // E

Copyright 2010 by Pearson Education
10

Section attendance answer
import java.io.*;
import java.util.*;

public class Sections {
 public static void main(String[] args) throws FileNotFoundException {
 Scanner input = new Scanner(new File("sections.txt"));
 int section = 1;
 while (input.hasNextLine()) {
 String line = input.nextLine(); // process one section
 int[] points = new int[5];
 for (int i = 0; i < line.length(); i++) {
 int student = i % 5;
 int earned = 0;
 if (line.charAt(i) == 'y') { // c == 'y' or 'n' or 'a'
 earned = 3;
 } else if (line.charAt(i) == 'n') {
 earned = 1;
 }
 points[student] = Math.min(20, points[student] + earned);
 }

 double[] grades = new double[5];
 for (int i = 0; i < points.length; i++) {
 grades[i] = 100.0 * points[i] / 20.0;
 }

 System.out.println("Section " + section);
 System.out.println("Student points: " + Arrays.toString(points));
 System.out.println("Student grades: " + Arrays.toString(grades));
 System.out.println();
 section++;
 }
 }
}

Copyright 2010 by Pearson Education
11

Data transformations
�  In many problems we transform data between forms.

�  Example: digits → count of each digit → most frequent digit
�  Often each transformation is computed/stored as an array.
�  For structure, a transformation is often put in its own method.

�  Sometimes we map between data and array indexes.

�  by position (store the i th value we read at index i)
�  tally (if input value is i, store it at array index i)
�  explicit mapping (count 'J' at index 0, count 'X' at index 1)

�  Exercise: Modify our Sections program to use static
methods that use arrays as parameters and returns.

Copyright 2010 by Pearson Education
12

Value/Reference Semantics
�  Variables of primitive types store values directly:

�  Values are copied from one variable to another:
 cats = age;

�  Variables of object types store references to memory:

�  References are copied from one variable to another:
 scores = grades;

index 0 1 2

value 89 78 93

age 20 cats 3

age 20 cats 20

grades

scores

Copyright 2010 by Pearson Education
13

Array param/return answer
// This program reads a file representing which students attended
// which discussion sections and produces output of the students'
// section attendance and scores.

import java.io.*;
import java.util.*;

public class Sections2 {
 public static void main(String[] args) throws FileNotFoundException {
 Scanner input = new Scanner(new File("sections.txt"));
 int section = 1;
 while (input.hasNextLine()) {
 // process one section
 String line = input.nextLine();
 int[] points = countPoints(line);
 double[] grades = computeGrades(points);
 results(section, points, grades);
 section++;
 }
 }

 // Produces all output about a particular section.
 public static void results(int section, int[] points, double[] grades) {
 System.out.println("Section " + section);
 System.out.println("Student scores: " + Arrays.toString(points));
 System.out.println("Student grades: " + Arrays.toString(grades));
 System.out.println();
 }

 ...

Copyright 2010 by Pearson Education
14

Array param/return answer
 ...

 // Computes the points earned for each student for a particular section.
 public static int[] countPoints(String line) {
 int[] points = new int[5];
 for (int i = 0; i < line.length(); i++) {
 int student = i % 5;
 int earned = 0;
 if (line.charAt(i) == 'y') { // c == 'y' or c == 'n'
 earned = 3;
 } else if (line.charAt(i) == 'n') {
 earned = 2;
 }
 points[student] = Math.min(20, points[student] + earned);
 }
 return points;
 }

 // Computes the percentage for each student for a particular section.
 public static double[] computeGrades(int[] points) {
 double[] grades = new double[5];
 for (int i = 0; i < points.length; i++) {
 grades[i] = 100.0 * points[i] / 20.0;
 }
 return grades;
 }
}

Copyright 2010 by Pearson Education
15

Problems with arrays
�  We need to know the size when we declare an array, and

we can’t change it later
�  Can’t add more elements
�  Can’t shrink the array to avoid wasting space

�  No method to find the index of a given object in an array

�  No method to add/remove from the middle of the list
without overwriting a given element

u  Could get around this with Arrays.copyOf

u  Could use Arrays.sort and Arrays.binarySearch, but
this could be inefficient

u  We’d have to write our own methods

Copyright 2010 by Pearson Education
16

ArrayLists

�  Arrays that dynamically resize themselves to accommodate
adding or removing elements

�  Works the same as a Python list

Copyright 2010 by Pearson Education
17

ArrayList declaration
Arrays: type[] name = new type[length];

ArrayList: ArrayList<type> name = new ArrayList<type>();

� Example:
ArrayList<String> words = new ArrayList<String>();

� Need to import java.util.*;

Copyright 2010 by Pearson Education
18

Primitives and ArrayList
ArrayList<type> name = new ArrayList<type>();

�  type must be an object type

�  Primitive types have wrapper classes that allow them to be

put in ArrayLists.

�  Autoboxing converts primitives to their wrapper type and
back in almost all places.

Primitive Wrapper

boolean Boolean

int Integer

double Double

char Character

Copyright 2010 by Pearson Education
19

ArrayList Methods
Method name Description

add(obj) Adds obj to the end of the list
add(index, obj) Adds obj at the specified index, shifting

higher-index elements to make room
contains(obj) Whether the list contains obj
get(i) Get the object at index i
indexOf(obj) Find the lowest index of obj in the list, -1 if

not found
lastIndexOf(obj) Find the highest index of obj in the list, -1 if

not found
remove(i) Remove the element at index i
remove(obj) Remove the lowest index occurrence of obj
set(i, obj) Set the element at index i to obj
size() The number of elements in the list

