

Copyright 2010 by Pearson Education

Building Java Programs

Arrays for Tallying; Text Processing; ArrayList

reading: 4.3, 7.6, 10.1

Copyright 2010 by Pearson Education

A multi-counter problem

- Problem: Write a method mostFrequentDigit that returns the digit value that occurs most frequently in a number.
 - Example: The number 669260267 contains: one 0, two 2s, four 6es, one 7, and one 9. mostFrequentDigit(669260267) returns 6.
 - If there is a tie, return the digit with the lower value. mostFrequentDigit(57135203) returns 3.

A multi-counter problem

We could declare 10 counter variables ...

int counter0, counter1, counter2, counter3, counter4, counter5, counter6, counter7, counter8, counter9;

But a better solution is to use an array of size 10.

- The element at index *i* will store the counter for digit value *i*.
- Example for 669260267:

• How do we build such an array? And how does it help?

Creating an array of tallies

```
// assume n = 669260267
int[] counts = new int[10];
while (n > 0) {
    // pluck off a digit and add to proper counter
    int digit = n \& 10;
   counts[digit]++;
   n = n / 10;
}
index 0 1 2 3 4 5 6 7 8 9
              2
value
          0
                         0
       1
                  0
                     0
                            4
                                1
                                    0
                                       0
```

Tally solution

```
// Returns the digit value that occurs most frequently in n.
// Breaks ties by choosing the smaller value.
public static int mostFrequentDigit(int n) {
    int[] counts = new int[10];
    while (n > 0) {
        int digit = n % 10; // pluck off a digit and tally it
        counts[digit]++;
        n = n / 10;
    }
    // find the most frequently occurring digit
    int bestIndex = 0;
    for (int i = 1; i < \text{counts.length}; i++) {
        if (counts[i] > counts[bestIndex]) {
            bestIndex = i;
        }
    }
    return bestIndex;
```

Section attendance question

• Read a file of section attendance (see next slide):

• And produce the following output:

```
Section 1
Student points: [20, 16, 17, 14, 11]
Student grades: [100.0, 80.0, 85.0, 70.0, 55.0]
Section 2
Student points: [16, 19, 14, 14, 8]
Student grades: [80.0, 95.0, 70.0, 70.0, 40.0]
Section 3
Student points: [16, 15, 16, 18, 14]
Student grades: [80.0, 75.0, 80.0, 90.0, 70.0]
```

Students earn 3 points for each section attended up to 20.

Section input file

student		12345	12345	12345	12345	12345	12345	12345	123453	12345
week		1	2	3	4	5	6	7	8	9
section	1	yynyy	ynaya	yynyy	yayan	уууау	nayya	yyana	yyyan	yayna
section	2	ayyan	ууууа	yanaa	yyana	yyyan	anaya	yayny	ауауу	nynya
section	3	ууауа	ynyya	yyany	nnyyya	ayyan	ayayn	annny	уаууа	yayny

- Each line represents a section.
- A line consists of 9 weeks' worth of data.
 - Each week has 5 characters because there are 5 students.
- Within each week, each character represents one student.
 - a means the student was absent (+0 points)
 - n means they attended but didn't do the problems (+1 points)
 - y means they attended and did the problems (+3 points)

String traversals

• The chars in a String can be accessed using the charAt method.

• accepts an int index parameter and returns the char at that index

```
String food = "cookie";
char firstLetter = food.charAt(0); // 'c'
System.out.println(firstLetter + " is for " + food);
```

• You can use a for loop to print or examine each character.

Section attendance answer

```
import java.io.*;
import java.util.*;
public class Sections {
    public static void main(String[] args) throws FileNotFoundException {
        Scanner input = new Scanner(new File("sections.txt"));
        int section = 1;
        while (input.hasNextLine()) {
            String line = input.nextLine(); // process one section
            int[] points = new int[5];
            for (int i = 0; i < line.length(); i++) {
                int student = i % 5;
                int earned = 0;
                if (line.charAt(i) == 'y') { // c == 'y' or 'n' or 'a'
                    earned = 3;
                } else if (line.charAt(i) == 'n') {
                    earned = 1;
                points[student] = Math.min(20, points[student] + earned);
            double[] grades = new double[5];
            for (int i = 0; i < points.length; i++) {
                grades[i] = 100.0 * points[i] / 20.0;
            System.out.println("Section " + section);
            System.out.println("Student points: " + Arrays.toString(points));
            System.out.println("Student grades: " + Arrays.toString(grades));
            System.out.println();
            section++;
```

Data transformations

- In many problems we transform data between forms.
 - Example: digits \rightarrow count of each digit \rightarrow most frequent digit
 - Often each transformation is computed/stored as an array.
 - For structure, a transformation is often put in its own method.
- Sometimes we map between data and array indexes.
 - by position (store the *i*th value we read at index *i*)
 - tally (if input value is *i*, store it at array index *i*)
 - explicit mapping (count 'J' at index 0, count 'X' at index 1)
- Exercise: Modify our Sections program to use static methods that use arrays as parameters and returns.

Value/Reference Semantics

cats

3

• Variables of primitive types store values directly:

• Values are copied from one variable to another:

20

age

Variables of object types store references to memory:

Array param/return answer

// This program reads a file representing which students attended
// which discussion sections and produces output of the students'
// section attendance and scores.

```
import java.io.*;
import java.util.*;
public class Sections2 {
    public static void main(String[] args) throws FileNotFoundException {
        Scanner input = new Scanner(new File("sections.txt"));
        int section = 1;
        while (input.hasNextLine()) {
            // process one section
            String line = input.nextLine();
            int[] points = countPoints(line);
            double[] grades = computeGrades(points);
            results (section, points, grades);
            section++;
    // Produces all output about a particular section.
    public static void results(int section, int[] points, double[] grades) {
        System.out.println("Section " + section);
        System.out.println("Student scores: " + Arrays.toString(points));
        System.out.println("Student grades: " + Arrays.toString(grades));
        System.out.println();
```

Array param/return answer

```
// Computes the points earned for each student for a particular section.
public static int[] countPoints(String line) {
    int[] points = new int[5];
    for (int i = 0; i < line.length(); i++) {
        int student = i \% 5;
        int earned = 0;
        if (line.charAt(i) == 'y') { // c == 'y' or c == 'n'
            earned = 3;
        } else if (line.charAt(i) == 'n') {
            earned = 2;
        points[student] = Math.min(20, points[student] + earned);
    return points;
}
// Computes the percentage for each student for a particular section.
public static double[] computeGrades(int[] points) {
    double[] grades = new double[5];
    for (int i = 0; i < points.length; i++) {</pre>
        grades[i] = 100.0 * points[i] / 20.0;
   return grades;
```

Problems with arrays

- We need to know the size when we declare an array, and we can't change it later
 - Can't add more elements
 - Can't shrink the array to avoid wasting space
 - Could get around this with Arrays.copyOf
- No method to find the index of a given object in an array
 - Could use Arrays.sort and Arrays.binarySearch, but this could be inefficient
- No method to add/remove from the middle of the list without overwriting a given element
 - We'd have to write our own methods

ArrayListS

- Arrays that dynamically resize themselves to accommodate adding or removing elements
- Works the same as a Python list

ArrayList declaration

Arrays: type[] name = new type[length];
ArrayList: ArrayList<type> name = new ArrayList<type>();

•Example:

ArrayList<String> words = new ArrayList<String>();

•Need to import java.util.*;

Primitives and ArrayList

ArrayList<type> name = new ArrayList<type>();

- type must be an object type
- Primitive types have wrapper classes that allow them to be put in ArrayLists.

Primitive	Wrapper
boolean	Boolean
int	Integer
double	Double
char	Character

 Autoboxing converts primitives to their wrapper type and back in almost all places.

ArrayList Methods

Method name	Description			
add (obj)	Adds obj to the end of the list			
add(index, obj)	Adds obj at the specified index, shifting higher-index elements to make room			
contains(obj)	Whether the list contains obj			
get(i)	Get the object at index i			
indexOf(obj)	Find the lowest index of obj in the list, -1 if not found			
lastIndexOf(obj)	Find the highest index of obj in the list, -1 if not found			
remove(i)	Remove the element at index i			
remove(obj)	Remove the lowest index occurrence of obj			
set(i, obj)	Set the element at index i to obj			
size()	The number of elements in the list			