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Building Java Programs 

Arrays for Tallying; Text Processing; ArrayList 
 

reading: 4.3, 7.6, 10.1 
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A multi-counter problem 
�  Problem: Write a method mostFrequentDigit that returns 

the digit value that occurs most frequently in a number. 

�  Example: The number 669260267 contains: 
   one 0, two 2s, four 6es, one 7, and one 9. 

 mostFrequentDigit(669260267) returns 6. 

�  If there is a tie, return the digit with the lower value. 
 mostFrequentDigit(57135203)  returns 3. 
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A multi-counter problem 
�  We could declare 10 counter variables ... 

 int counter0, counter1, counter2, counter3, counter4,  

     counter5, counter6, counter7, counter8, counter9; 

�  But a better solution is to use an array of size 10. 
�  The element at index i will store the counter for digit value i. 
�  Example for 669260267: 

�  How do we build such an array?  And how does it help? 

index 0 1 2 3 4 5 6 7 8 9 

value 1 0 2 0 0 0 4 1 0 1 
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Creating an array of tallies 
 

 // assume n = 669260267 
 int[] counts = new int[10]; 
 while (n > 0) { 
     // pluck off a digit and add to proper counter 
     int digit = n % 10; 
     counts[digit]++; 
     n = n / 10; 
 } 

index 0 1 2 3 4 5 6 7 8 9 

value 1 0 2 0 0 0 4 1 0 0 
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Tally solution 
// Returns the digit value that occurs most frequently in n. 
// Breaks ties by choosing the smaller value. 
public static int mostFrequentDigit(int n) { 
    int[] counts = new int[10]; 
    while (n > 0) { 
        int digit = n % 10;  // pluck off a digit and tally it 
        counts[digit]++; 
        n = n / 10; 
    } 
     

    // find the most frequently occurring digit 
    int bestIndex = 0; 
    for (int i = 1; i < counts.length; i++) { 
        if (counts[i] > counts[bestIndex]) { 
            bestIndex = i; 
        } 
    } 
     

    return bestIndex; 
} 
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Section attendance question 
�  Read a file of section attendance (see next slide): 

 

yynyyynayayynyyyayanyyyaynayyayyanayyyanyayna 
ayyanyyyyayanaayyanayyyananayayaynyayayynynya 
yyayaynyyayyanynnyyyayyanayaynannnyyayyayayny 

�  And produce the following output: 
 

Section 1 
Student points: [20, 16, 17, 14, 11] 
Student grades: [100.0, 80.0, 85.0, 70.0, 55.0] 
 
Section 2 
Student points: [16, 19, 14, 14, 8] 
Student grades: [80.0, 95.0, 70.0, 70.0, 40.0] 
 
Section 3 
Student points: [16, 15, 16, 18, 14] 
Student grades: [80.0, 75.0, 80.0, 90.0, 70.0] 
 
•  Students earn 3 points for each section attended up to 20. 



Copyright 2010 by Pearson Education 
8 

 

 
 
 
 
 
 
 
 

�  Each line represents a section. 
�  A line consists of 9 weeks' worth of data. 

�  Each week has 5 characters because there are 5 students. 
�  Within each week, each character represents one student. 

�  a means the student was absent  (+0 points) 
�  n means they attended but didn't do the problems  (+1 points) 
�  y means they attended and did the problems  (+3 points) 

Section input file 

yynyyynayayynyyyayanyyyaynayyayyanayyyanyayna 

ayyanyyyyayanaayyanayyyananayayaynyayayynynya 
yyayaynyyayyanynnyyyayyanayaynannnyyayyayayny 

week   1    2    3    4    5    6    7    8    9 

student 123451234512345123451234512345123451234512345 

section  1 
section  2 
section  3 
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String traversals 
�  The chars in a String can be accessed using the charAt method. 

�  accepts an int index parameter and returns the char at that index 
 
 

 String food = "cookie"; 
 char firstLetter = food.charAt(0);   // 'c' 
  

 System.out.println(firstLetter + " is for " + food); 
 

 

�  You can use a for loop to print or examine each character. 
 

 String major = "CSE"; 
 for (int i = 0; i < major.length(); i++) {    // output: 
     char c = major.charAt(i);                 // C 
     System.out.println(c);                    // S 
 }                                             // E 



Copyright 2010 by Pearson Education 
10 

Section attendance answer 
import java.io.*; 
import java.util.*; 
 

public class Sections { 
    public static void main(String[] args) throws FileNotFoundException { 
        Scanner input = new Scanner(new File("sections.txt")); 
        int section = 1; 
        while (input.hasNextLine()) { 
            String line = input.nextLine();      // process one section 
            int[] points = new int[5]; 
            for (int i = 0; i < line.length(); i++) { 
                int student = i % 5; 
                int earned = 0; 
                if (line.charAt(i) == 'y') {     // c == 'y' or 'n' or 'a' 
                    earned = 3; 
                } else if (line.charAt(i) == 'n') { 
                    earned = 1; 
                } 
                points[student] = Math.min(20, points[student] + earned); 
            } 
 

            double[] grades = new double[5]; 
            for (int i = 0; i < points.length; i++) { 
                grades[i] = 100.0 * points[i] / 20.0; 
            } 
 

            System.out.println("Section " + section); 
            System.out.println("Student points: " + Arrays.toString(points)); 
            System.out.println("Student grades: " + Arrays.toString(grades)); 
            System.out.println(); 
            section++; 
        } 
    } 
} 
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Data transformations 
�  In many problems we transform data between forms. 

�  Example:  digits  → count of each digit  → most frequent digit 
�  Often each transformation is computed/stored as an array. 
�  For structure, a transformation is often put in its own method. 

�  Sometimes we map between data and array indexes. 
 

�  by position  (store the i th value we read at index i ) 
�  tally  (if input value is i, store it at array index i ) 
�  explicit mapping  (count 'J' at index 0, count 'X' at index 1) 

�  Exercise: Modify our Sections program to use static 
methods that use arrays as parameters and returns. 
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Value/Reference Semantics 
�  Variables of primitive types store values directly: 

�  Values are copied from one variable to another: 
 cats = age; 

�  Variables of object types store references to memory: 

�  References are copied from one variable to another: 
 scores = grades; 

index 0 1 2 

value 89 78 93 

age 20 cats 3 

age 20 cats 20 

grades 

scores 
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Array param/return answer 
// This program reads a file representing which students attended 
// which discussion sections and produces output of the students' 
// section attendance and scores. 
 

import java.io.*; 
import java.util.*; 
 

public class Sections2 { 
    public static void main(String[] args) throws FileNotFoundException { 
        Scanner input = new Scanner(new File("sections.txt")); 
        int section = 1; 
        while (input.hasNextLine()) { 
            // process one section 
            String line = input.nextLine(); 
            int[] points = countPoints(line); 
            double[] grades = computeGrades(points); 
            results(section, points, grades); 
            section++; 
        } 
    } 
     
    // Produces all output about a particular section. 
    public static void results(int section, int[] points, double[] grades) { 
        System.out.println("Section " + section); 
        System.out.println("Student scores: " + Arrays.toString(points)); 
        System.out.println("Student grades: " + Arrays.toString(grades)); 
        System.out.println(); 
    } 
 
    ... 
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Array param/return answer 
    ... 
             

    // Computes the points earned for each student for a particular section. 
    public static int[] countPoints(String line) { 
        int[] points = new int[5]; 
        for (int i = 0; i < line.length(); i++) { 
            int student = i % 5; 
            int earned = 0; 
            if (line.charAt(i) == 'y') {     // c == 'y'  or  c == 'n' 
                earned = 3; 
            } else if (line.charAt(i) == 'n') { 
                earned = 2; 
            } 
            points[student] = Math.min(20, points[student] + earned); 
        } 
        return points; 
    } 
     

    // Computes the percentage for each student for a particular section. 
    public static double[] computeGrades(int[] points) { 
        double[] grades = new double[5]; 
        for (int i = 0; i < points.length; i++) { 
            grades[i] = 100.0 * points[i] / 20.0; 
        } 
        return grades; 
    } 
} 
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Problems with arrays 
�  We need to know the size when we declare an array, and 

we can’t change it later 
�  Can’t add more elements 
�  Can’t shrink the array to avoid wasting space 

�  No method to find the index of a given object in an array 

�  No method to add/remove from the middle of the list 
without overwriting a given element 

u   Could get around this with Arrays.copyOf 

u  Could use Arrays.sort and Arrays.binarySearch, but 
this could be inefficient 

u   We’d have to write our own methods 
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ArrayLists 

�  Arrays that dynamically resize themselves to accommodate 
adding or removing elements 

�  Works the same as a Python list 
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ArrayList declaration 
Arrays:    type[]          name = new type[length]; 

ArrayList: ArrayList<type> name = new ArrayList<type>(); 
 
� Example: 
ArrayList<String> words = new ArrayList<String>(); 

� Need to import java.util.*; 
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Primitives and ArrayList 
ArrayList<type> name = new ArrayList<type>(); 
 
�  type must be an object type 
 
�  Primitive types have wrapper classes that allow them to be 

put in ArrayLists.  

�  Autoboxing converts primitives to their wrapper type and 
back in almost all places. 

Primitive Wrapper 

boolean Boolean 

int Integer 

double Double 

char Character 
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ArrayList Methods 
Method name Description 

add(obj) Adds obj to the end of the list 
add(index, obj) Adds obj at the specified index, shifting 

higher-index elements to make room 
contains(obj) Whether the list contains obj 
get(i) Get the object at index i 
indexOf(obj) Find the lowest index of obj in the list, -1 if 

not found 
lastIndexOf(obj) Find the highest index of obj in the list, -1 if 

not found 
remove(i) Remove the element at index i 
remove(obj) Remove the lowest index occurrence of obj 
set(i, obj) Set the element at index i to obj 
size() The number of elements in the list 


