
Copyright 2010 by Pearson Education 
1 

Building Java Programs 

Strings, File I/O 
 

reading: 3.3, 4.3-4.4, 5.4, 6.1 – 6.5 



Copyright 2010 by Pearson Education 
2 

Strings 
�  string: An object storing a sequence of text characters. 

�  Unlike most other objects, a String is not created with new. 

 String name = "text"; 
 String name = expression; 

 

�  Characters of a string are numbered with 0-based indexes: 
 

 String name = "Ultimate"; 

�  First character's index : 0 
�  Last character's index : 1 less than the string's length 

�  The individual characters are values of type char (seen later) 

index 0 1 2 3 4 5 6 7 
character U l t i m a t e 



Copyright 2010 by Pearson Education 
3 

String methods 
 

�  These methods are called using the dot notation: 
 

String starz = "Yeezy & Hova"; 
System.out.println(starz.length());   // 12 

Method name Description 
indexOf(str) index where the start of the given string 

appears in this string (-1 if not found) 
length() number of characters in this string 
substring(index1, index2) 
or 
substring(index1) 

the characters in this string from index1 
(inclusive) to index2 (exclusive); 
if index2 is omitted, grabs till end of string 

toLowerCase() a new string with all lowercase letters 
toUpperCase() a new string with all uppercase letters 



Copyright 2010 by Pearson Education 
4 

Modifying strings 
�  Methods like substring and toLowerCase build and return 

a new string, rather than modifying the current string. 
 

 String s = "Aceyalone"; 
 s.toUpperCase(); 
 System.out.println(s);   // Aceyalone 
 
 

�  To modify a variable's value, you must reassign it: 
 

 String s = "Aceyalone"; 
 s = s.toUpperCase(); 
 System.out.println(s);   // ACEYALONE 



Copyright 2010 by Pearson Education 
5 

String test methods 

 
String name = console.next(); 
if(name.endsWith("Kweli")) { 

   System.out.println("Pay attention, you gotta listen to hear."); 
} else if(name.equalsIgnoreCase("NaS")) { 

   System.out.println("I never sleep 'cause sleep is the cousin of 
     death."); 

} 

 

Method Description 
equals(str) whether two strings contain the same characters 

equalsIgnoreCase(str) whether two strings contain the same characters, 
ignoring upper vs. lower case 

startsWith(str) whether one contains other's characters at start 

endsWith(str) whether one contains other's characters at end 

contains(str) whether the given string is found within this one 



Copyright 2010 by Pearson Education 
6 

Type char 
�  char : A primitive type representing single characters. 

�  Each character inside a String is stored as a char value. 
�  Literal char values are surrounded with apostrophe 

(single-quote) marks, such as 'a' or '4' or '\n' or '\'' 

�  It is legal to have variables, parameters, returns of type char 
 

 char letter = 'S'; 
 System.out.println(letter);              // S 
 
 

�  char values can be concatenated with strings. 
  

 char initial = 'P'; 
 System.out.println(initial + " Diddy");  // P Diddy 



Copyright 2010 by Pearson Education 
7 

char vs. String 
�  "h" is a String 
'h' is a char  (the two behave differently) 
 

�  String is an object; it contains methods 
 

String s = "h"; 
s = s.toUpperCase();        // 'H' 
int len = s.length();       //  1 
char first = s.charAt(0);   // 'H' 
 

�  char is primitive; you can't call methods on it 
 

char c = 'h'; 
c = c.toUpperCase();   // ERROR: "cannot be dereferenced” 
 



Copyright 2010 by Pearson Education 
8 

File input 



Copyright 2010 by Pearson Education 
9 

Reading files 
�  To read a file, pass a File when constructing a Scanner.  

 Scanner name = new Scanner(new File("file name")); 
 
�  Example: 
 File file = new File("mydata.txt"); 
 Scanner input = new Scanner(file); 
 

�  or (shorter): 
 Scanner input = new Scanner(new File("mydata.txt")); 
 

�  To access File: import java.io.*; 



Copyright 2010 by Pearson Education 
10 

Using Scanner methods 
�  Avoiding type mismatches: 

 

 Scanner console = new Scanner(System.in); 
 System.out.print("How old are you? "); 
 if (console.hasNextInt()) { 
     int age = console.nextInt();   // will not crash! 
     System.out.println("Wow, " + age + " is old!"); 
 } else { 
     System.out.println("You didn't type an integer."); 
 } 
 

�  Avoiding reading past the end of a file: 
 

 Scanner input = new Scanner(new File("example.txt")); 
 if (input.hasNext()) { 
     String token = input.next();   // will not crash! 
     System.out.println("next token is " + token); 
 } 



Copyright 2010 by Pearson Education 
11 

Hours question 
�  Given a file hours.txt with the following contents: 

 

 123 Ben 12.5 8.1 7.6 3.2 
 456 Greg 4.0 11.6 6.5 2.7 12 
 789 Victoria 8.0 8.0 8.0 8.0 7.5 
 
�  Consider the task of computing hours worked by each person: 

 Ben (ID#123) worked 31.4 hours (7.85 hours/day) 

 Greg (ID#456) worked 36.8 hours (7.36 hours/day) 

 Victoria (ID#789) worked 39.5 hours (7.90 hours/day) 
 
 



Copyright 2010 by Pearson Education 
12 

The throws clause 
�  throws clause: Keywords on a method's header that state 

that it may generate an exception (and will not handle it). 
 

�  Syntax: 

 public static type name(params) throws type { 
 
�  Example: 
 public class ReadFile { 

     public static void main(String[] args) 

             throws FileNotFoundException { 
 

�  Like saying, "I hereby announce that this method might throw 
an exception, and I accept the consequences if this happens." 



Copyright 2010 by Pearson Education 
13 

Hours answer (flawed) 
// This solution does not work! 
import java.io.*;               // for File 
import java.util.*;             // for Scanner 
 

public class HoursWorked { 
    public static void main(String[] args) 
            throws FileNotFoundException { 
        Scanner input = new Scanner(new File("hours.txt")); 
        while (input.hasNext()) { 
            // process one person 
            int id = input.nextInt(); 
            String name = input.next(); 
            double totalHours = 0.0; 
            int days = 0; 
            while (input.hasNextDouble()) { 
                totalHours += input.nextDouble(); 
                days++; 
            } 
            System.out.println(name + " (ID#" + id +  
                    ") worked " + totalHours + " hours (" + 
                    (totalHours / days) + " hours/day)"); 
        } 
    } 
} 



Copyright 2010 by Pearson Education 
14 

Flawed output 
Ben (ID#123) worked 487.4 hours (97.48 hours/day) 
Exception in thread "main" 
java.util.InputMismatchException 
        at java.util.Scanner.throwFor(Scanner.java:840) 
        at java.util.Scanner.next(Scanner.java:1461) 
        at java.util.Scanner.nextInt(Scanner.java:2091) 
        at HoursWorked.main(HoursBad.java:9) 
 

�  The inner while loop is grabbing the next person's ID. 
�  We want to process the tokens, but we also care about the line 

breaks (they mark the end of a person's data). 

�  A better solution is a hybrid approach: 
�  First, break the overall input into lines. 
�  Then break each line into tokens. 



Copyright 2010 by Pearson Education 
15 

Line-based Scanner methods 

Scanner input = new Scanner(new File("<filename>")); 
while (input.hasNextLine()) { 
    String line = input.nextLine(); 
    <process this line>; 
} 

Method Description 
nextLine() returns next entire line of input  (from cursor to \n) 

hasNextLine() returns true if there are any more lines of input 
to read   (always true for console input) 



Copyright 2010 by Pearson Education 
16 

Scanners on Strings 
�  A Scanner can tokenize the contents of a String: 

 

 Scanner <name> = new Scanner(<String>); 

 
 
�  Example: 
 

 String text = "15  3.2 hello   9  27.5"; 
 Scanner scan = new Scanner(text); 

 

 int num = scan.nextInt(); 
 System.out.println(num);           // 15 

 

 double num2 = scan.nextDouble(); 
 System.out.println(num2);          // 3.2 

 

 String word = scan.next(); 
 System.out.println(word);          // "hello" 



Copyright 2010 by Pearson Education 
17 

Mixing lines and tokens 
 
 
 
 
 
 
 // Counts the words on each line of a file 
 Scanner input = new Scanner(new File("input.txt")); 
 while (input.hasNextLine()) { 
     String line = input.nextLine(); 
     Scanner lineScan = new Scanner(line); 

 

     // process the contents of this line 
     int count = 0; 
     while (lineScan.hasNext()) { 
         String word = lineScan.next(); 
         count++; 
     } 
     System.out.println("Line has " + count + " words"); 
 } 

Input file input.txt: Output to console: 
The quick brown fox jumps over 
the lazy dog. 

Line has 6 words 
Line has 3 words 



Copyright 2010 by Pearson Education 
18 

Hours question 
�  Fix the Hours program to read the input file properly: 

 

 123 Ben 12.5 8.1 7.6 3.2 
 456 Greg 4.0 11.6 6.5 2.7 12 
 789 Victoria 8.0 8.0 8.0 8.0 7.5 
 
�  Recall, it should produce the following output: 

 Ben (ID#123) worked 31.4 hours (7.85 hours/day) 

 Greg (ID#456) worked 36.8 hours (7.36 hours/day) 

 Victoria (ID#789) worked 39.5 hours (7.90 hours/day) 



Copyright 2010 by Pearson Education 
19 

Hours answer, corrected 
// Processes an employee input file and outputs each employee's hours. 
import java.io.*;    // for File 
import java.util.*;  // for Scanner 
 
public class Hours { 
    public static void main(String[] args) throws FileNotFoundException { 
        Scanner input = new Scanner(new File("hours.txt")); 
        while (input.hasNextLine()) { 
            String line = input.nextLine(); 
            processEmployee(line); 
        } 
    } 
 
    public static void processEmployee(String line) { 
        Scanner lineScan = new Scanner(line); 
        int id = lineScan.nextInt();          // e.g. 456 
        String name = lineScan.next();        // e.g. "Greg" 
        double sum = 0.0; 
        int count = 0; 
        while (lineScan.hasNextDouble()) { 
            sum = sum + lineScan.nextDouble(); 
            count++; 
        } 
 
        double average = sum / count; 
        System.out.println(name + " (ID#" + id + ") worked " + 
            sum + " hours (" + average + " hours/day)"); 
    } 
} 



Copyright 2010 by Pearson Education 
20 

File output 
reading: 6.4 - 6.5 



Copyright 2010 by Pearson Education 
21 

Output to files 
�  PrintStream: An object in the java.io package that lets 

you print output to a destination such as a file. 
 

�  Any methods you have used on System.out 
(such as print, println) will work on a PrintStream. 

 
 

�  Syntax: 
 

PrintStream <name> = new PrintStream(new File("<filename>")); 

 

Example: 
PrintStream output = new PrintStream(new File("out.txt")); 
output.println("Hello, file!"); 
output.println("This is a second line of output."); 



Copyright 2010 by Pearson Education 
22 

Details about PrintStream 
 
PrintStream <name> = new PrintStream(new File("<filename>")); 
 
�  If the given file does not exist, it is created. 
�  If the given file already exists, it is overwritten. 
 
�  The output you print appears in a file, not on the console. 

You will have to open the file with an editor to see it. 

�  Do not open the same file for both reading (Scanner) 
and writing (PrintStream) at the same time. 
�  You will overwrite your input file with an empty file (0 bytes). 



Copyright 2010 by Pearson Education 
23 

PrintStream question 
�  Modify our previous Hours program to use a PrintStream 

to send its output to the file hours_out.txt. 

�  The program will produce no console output. 
�  But the file hours_out.txt will be created with the text: 
 
 

 Ben (ID#123) worked 31.4 hours (7.85 hours/day) 

 Greg (ID#456) worked 36.8 hours (7.36 hours/day) 

 Victoria (ID#789) worked 39.5 hours (7.9 hours/day) 



Copyright 2010 by Pearson Education 
24 

PrintStream answer 
// Processes an employee input file and outputs each employee's hours. 
import java.io.*;    // for File 
import java.util.*;  // for Scanner 
 
public class Hours2 { 
    public static void main(String[] args) throws FileNotFoundException { 
        Scanner input = new Scanner(new File("hours.txt")); 
        PrintStream out = new PrintStream(new File("hours_out.txt")); 
        while (input.hasNextLine()) { 
            String line = input.nextLine(); 
            processEmployee(out, line); 
        } 
    } 
 
    public static void processEmployee(PrintStream out, String line) { 
        Scanner lineScan = new Scanner(line); 
        int id = lineScan.nextInt();          // e.g. 456 
        String name = lineScan.next();        // e.g. "Greg" 
        double sum = 0.0; 
        int count = 0; 
        while (lineScan.hasNextDouble()) { 
            sum = sum + lineScan.nextDouble(); 
            count++; 
        } 
 
        double average = sum / count; 
        out.println(name + " (ID#" + id + ") worked " + 
                    sum + " hours (" + average + " hours/day)"); 
    } 
} 


