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CSE 190 D, Winter 2013 
Programming Assignment #9: Birthday/Date (12 points) 

Due Monday, March 11, 2013, 11:30 PM 
This program focuses on classes and objects.  Turn in two files named Birthday.java and Date.java. You will also 
need the support file Date.class from the course web site; place it in the same folder as your program. 

The assignment has two parts: a client program that uses Date objects, and a Date class of your own whose objects 
represent calendar dates.  It is meant to be shorter than other recent assignments and is also worth fewer points. 

Part A (Birthday.java, client program): 
The first part of this assignment asks you to write a client that uses an existing Date class written by the instructor.  The 
goal of Part A is to give you a bit of practice creating and using Date objects from a client's perspective and to give you 
an appreciation for the usefulness Date objects in general. 

Begin by prompting the user for today's date and for his/her birthday, each as a month-day pair.  Use this information to 
print the number of days in the month the user was born, and the number of days from today to the user's birthday.  If the 
user's birthday is today, print a Happy Birthday message. 

Below are several example logs of execution from the program; user input is bold and underlined.  Your program's output 
should match these examples exactly given the same input.  See the course web site for more logs with other input. 
What is today's date (month and day)? 11 4 
What is your birthday (month and day)? 9 9 
There are 30 days in month #9 
Number of days until birthday 9/9: 309 

What is today's date (month and day)? 12 15 
What is your birthday (month and day)? 12 15 
There are 31 days in month #12 
Happy birthday! 

What is today's date (month and day)? 8 19 
What is your birthday (month and day)? 11 30 
There are 30 days in month #11 
Number of days until birthday 11/30: 103 

What is today's date (month and day)? 10 2 
What is your birthday (month and day)? 10 1 
There are 31 days in month #10 
Number of days until birthday 10/1: 364 

 

Solve this problem using Date objects.  The methods and behavior of each Date object are described on the next page.  
For Part A you can use an instructor-provided version of Date by downloading the file Date.class from the web site 
and saving it to the same folder as your Birthday.java file.  You can construct a Date object as follows: 

    Date name = new Date(month, day); 

 

To figure out the number of days until the user's birthday, represent today and the birthday as Date objects.  By 
advancing one date until it reaches the other and counting, you can determine the number of days between them.   

You do not have to worry about leap years at all for this assignment.  Assume that February always has 28 days and 
that the year is always 365 days long.  (A leap year occurs roughly every 4 years and adds a 29th day to February, making 
the year 366 days long.  But we will ignore that possibility for this assignment.) 

Assume valid input (that the user will always type a month between 1-12 and a day between 1 and the end of that month). 
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Part B (Date.java, class of objects): 
The second part of this assignment asks you to implement a class named Date, stored in a second file named Date.java. 
For all methods/constructors shown below, you may assume that any parameter values passed are valid. 
Your Date class should implement the following behavior: 

• public Date(int month, int day) 
Constructs a new Date representing the given month and day. 

• public int getMonth() 
This method should return the month of the Date object on which it was called, between 1 and 12.  For 
example, if the Date object represents August 17, this method should return 8. 

• public int getDay() 
This method should return the day of the month of the Date object on which it was called, between 1 
and the number of days in that month (which will be between 28 and 31).  For example, if the Date 
object represents August 17, this method should return 17. 

• public void setDate(int month, int day)  
Modifies the state of the Date object on which it was called to represent the given month and day.  
You may assume that the parameter values passed are valid. 

• public String toString() 
This method should return a String representation of the Date object on which it was called in a 
month/day format.  For example, if the Date object represents March 24, return "3/24".  If this Date 
object represents December 3, return "12/3".  This method returns the string; it does not print output. 

• public boolean equals(Date d)  

This method should return true when the Date object on which it was called represents the same date 
as the given Date parameter, or false otherwise. 

• public int daysInMonth() 
This method should return the number of days in the month represented by the Date object on which it 
was called.  The following table lists the number of days in each of the twelve months of the year: 

  1 2 3 4 5 6 7 8 9 10 11 12 
 Name Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
 Days 31 28 31 30 31 30 31 31 30 31 30 31 

 For example, if the Date object represents August 17, this method should return 31.  If this Date 
object represents February 14, you should return 28.  You do not need to worry about leap years.  Note 
that a very similar problem was on your section 4 handout. 

• public void nextDay() 
This method should modify the state of the Date object on which it was called by advancing it 1 day in 
time.  For example, if the Date object represents September 19, a call to this method should modify 
the Date object's state so that it represents September 20.  Note that depending on the date, a call to 
this method might advance the Date object into the next month or year.  For example, the next day 
after August 17 is August 18; the next day after February 28 is March 1; and the next day after 
December 31 is January 1. 

None of the methods listed above should print any output to the console.  You may not utilize any behavior from the 
instructor-provided Date class to help implement your own Date class, nor use any of Java's date-related classes such as 
java.util.GregorianCalendar or java.util.Date. 
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Testing Your Program: 
You can test your Date program by running your Birthday.java program from Part A with it.  By compiling your 
Date.java file you will overwrite our provided Date.class with your own.  (If necessary you can always revert to our 
Date.class by re-downloading it or backing it up.) 

Birthday.java is not a great testing program; it might not call all of your Date methods or may not call them in a very 
exhaustive way that tests all cases and combinations.  Therefore you may want to create another small client program of 
your own to help test other aspects of your Date class's behavior.  You might also use the Interactions pane in jGRASP 
to test constructing Date objects, calling their various methods, and looking at the results. 

You may put additional behavior in your Date class if you like, but we will still test your Birthday program with the 
instructor-provided Date class, so it should still run correctly with that class and not only when used with your Date.  In 
other words, your Birthday.java should not rely on any Date behavior that is not described in this specification. 

Development Strategy and Hints: 
Complete Part A before Part B, to get a good understanding of how Date objects work from the client's perspective. 
Write Part B in phases: 

• Write the constructor and getDay, getMonth, and setDate methods first. 
• Then implement toString, equals, and daysInMonth. 
• Last, write nextDay. 

Build your Date class incrementally, writing a small amount of code at a time and testing it.  It is possible to test an 
incomplete Date class by writing some of its methods and then creating a small client program to call just those methods, 
or by playing with Date objects in the Interactions window of jGRASP. 

Recall that code in one of an object's methods is able to call any of the object's other methods if so desired.  Specifically, 
when implementing nextDay you may want to consider calling other methods within the Date object to help you. 

Since objects can be difficult to visualize and understand, we strongly recommend that you use the jGRASP debugger to 
step through your code to understand each method's behavior, especially in Part B.  You can also use temporary 
debugging println statements from inside the Date class to see what is going on.  For example, printing the state of the 
current Date object from inside the daysInMonth or nextDay method can help you find bugs. 

Style Guidelines: 
For Part A, you are to solve the problem by creating and using Date objects as much as possible.  This is because a major 
goal of this assignment is to demonstrate understanding of using objects and defining new classes of objects.  Part A is not 
required to have any static methods besides main, though you may have additional methods if you like. 

For Part B, implement your Date as a new type of objects, using non-static methods, non-static data fields, constructors, 
etc. as appropriate.  You should also properly encapsulate your Date objects by making their methods and constructors 
public and their data fields private.  As much as possible you should avoid redundancy and repeated logic within the 
Date class.  Avoid unnecessary fields: use fields to store the important data of your Date objects but not to store 
temporary values that are only used within a single call to one method. 

On both parts of the assignment, you should follow general past style guidelines such as: appropriately using control 
structures like loops and if/else statements; avoiding redundancy using techniques such as methods, loops, and if/else 
factoring; properly using indentation, names, types, variables; and not having lines longer than 100 characters. 

You should properly comment your code with a proper heading in each file, a description on top of each method, and on 
any complex sections of your code.  Specifically, place a comment heading at the top of each method of the Date class, 
written in your own words, describing that method's behavior, parameters, and return values if any.  Your comments 
should be written in your own words and not taken verbatim from this spec or elsewhere. 

For reference, our Birthday.java solution is around 30-40 lines long (20 "substantive" lines according to the Indenter 
tool), and our Date.java is around 70 lines (32 "substantive"). 


