
1 of 3

CSE 190 D, Winter 2013
Programming Assignment #10: Critters (20 points)

Due: Monday, March 18, 2013, 11:30 PM
This assignment focuses on classes and objects. Turn in Ant.java and Bird.java. Download supporting files on the
course web site. Run CritterMain.java to start the simulation.

Program Behavior:
You are provided with several client program classes that implement a
graphical simulation of a 2D world of animals. You will write classes that
define the behavior of those animals. Animals move and behave in different
ways. Your classes will define the unique behaviors for each animal.

The critter world is divided into cells with integer coordinates. The world is
60 cells wide and 50 cells tall. The upper-left cell has coordinates (0, 0);
x increases to the right and y increases downward.

Movement
On each round of the simulation, the simulator asks each critter object which direction it wants to move. Each round a
critter can move one square north, south, east, west, or stay at its current location ("center"). The world has a finite size,
but it wraps around in all four directions (for example, moving east from the right edge brings you back to the left edge).
This program will be confusing at first, because you do not write its main method; your code is not in control of the
overall execution. Instead, your objects are part of a larger system. You might want your critters make several moves at
once using a loop, but you can't. The only way a critter moves is to wait for the simulator to ask it for a single move and
return that move. This experience can be frustrating, but it is a good introduction to object-oriented programming.

Fighting/Mating
As the simulation runs, animals may collide by moving onto the same location. When two animals collide, if they are
from different species, they fight. The winning animal survives and the losing animal is removed from the game. Each
animal chooses one of Attack.ROAR, Attack.POUNCE, or Attack.SCRATCH. Each attack is strong against one other
(e.g. roar beats scratch) and weak against another (roar loses to pounce). The following table summarizes the choices and
which animal will win in each case. To remember which beats which, notice that the starting letters of "Roar, Pounce,
Scratch" match those of "Rock, Paper, Scissors." If the animals make the same choice, the winner is chosen at random.

 Critter #2
 Attack.ROAR Attack.POUNCE Attack.SCRATCH

Critter #1 Attack.ROAR random winner #2 wins #1 wins
Attack.POUNCE #1 wins random winner #2 wins
Attack.SCRATCH #2 wins #1 wins random winner

If two animals of the same species collide, they "mate" to produce a baby. Animals are vulnerable to attack while mating:
any other animal that collides with them will defeat them. An animal can mate only once during its lifetime.

Eating
The simulation world also contains food (represented by the period character, ".") for the animals to eat. There are
pieces of food on the world initially, and new food slowly grows into the world over time. As an animal moves, it may
encounter food, in which case the simulator will ask your animal whether it wants to eat it. Different kinds of animals
have different eating behavior; some always eat, and others only eat under certain conditions.
Every time one class of animals eats a few pieces of food, that animal will be put to "sleep" by the simulator for a small
amount of time. While asleep, animals cannot move, and if they enter a fight with another animal, they will always lose.

Scoring
The simulator keeps a score for each class of animal, shown on the right side of the screen. A class's score is based on
how many animals of that class are alive, how much food they have eaten, and how many other animals they have killed.

2 of 3

Provided Files:
Each class you write will extend a superclass named Critter. This is an example of inheritance, as discussed in Ch. 9
of the textbook. Inheritance makes it easier for our code to talk to your critter classes, and it helps us be sure that all your
animal classes will implement all the methods we need. Your class headers should indicate the inheritance by writing
extends Critter, like the following:

public class Ant extends Critter { ...

The Critter class contains the following methods, some/all of which you must write in each of your classes:

• public boolean eat()
When your animal encounters food, our code calls this on it to ask whether it wants to eat (true) or not (false).

• public Attack fight(String opponent)
When two animals move onto the same square of the grid, they fight. When they collide, our code calls this on
each animal to ask it what kind of attack it wants to use in a fight with the given opponent.

• public Color getColor()
Every time the board updates, our code calls this on your animal to ask it what color it wants to be drawn with.

• public Direction getMove()
Every time the board updates, our code calls this on your animal to ask it which way it wants to move.

• public String toString()
Every time the board updates, our code calls this on your animal to ask what letter it should be drawn as.

Just by writing extends Critter as shown above, you receive a default version of these methods. The default behavior
is to never eat, to always forfeit fights, to use the color black, to always stand still (a move of Direction.CENTER), and
a toString of "?". If you don't want this default, rewrite (override) the methods in your class with your own behavior.

For example, below is a critter class Stone. A Stone is displayed with the letter S, is gray in color, never moves or eats,
and always roars in a fight. Your classes will look like this class, except with fields, a constructor, and more sophisticated
code. The Stone does not need an eat or getMove method; it uses the default behavior for those operations.

import java.awt.*; // for Color

public class Stone extends Critter {
 public Attack fight(String opponent) {
 return Attack.ROAR;
 }

 public Color getColor() {
 return Color.GRAY;
 }

 public String toString() {
 return "S";
 }
}

Running the Simulator:
When you press the Go button, it begins a series of turns. On each turn, the simulator does the following for each animal:

• move the animal once (calling its getMove method), in random order
• if the animal has moved onto an occupied square, fight! (call both animals' fight methods) or mate
• if the animal has moved onto food, ask it if it wants to eat (call the animal's eat method)

After moving all animals, the simulator redraws the screen, asking each animal for its toString and getColor values.
It can be difficult to test and debug with many animals. We suggest adjusting the initial settings to use a smaller world
and fewer animals. There is also a Debug checkbox that, when checked, prints console output about the game behavior.

3 of 3

Critter Classes:
The following are the two animal classes to implement. Each has one constructor that accepts exactly the parameter(s) in
the table. For random moves, each choice must be equally likely; use a Random object or the Math.random method.

1. Ant
constructor public Ant(boolean walkSouth)

color red
eating behavior always returns true
fighting behavior always scratch
movement if the Ant was constructed with a walkSouth value of true, then

 alternates between south and east in a zigzag (S, E, S, E, ...); otherwise,
if the Ant was constructed with a walkSouth value of false, then
 alternates between north and east in a zigzag (N, E, N, E, ...)

toString "%" (percent)

2. Bird
constructor public Bird()

color blue
eating behavior never eats (always returns false)
fighting behavior roars if the opponent looks like an Ant ("%"); otherwise pounces
movement a clockwise square: first goes north 3 times, then east 3 times,

then south 3 times, then west 3 times, then repeats
toString "^" (caret) if the bird's last move was north or it has not moved;

">" (greater-than) if the bird's last move was east;
"V" (uppercase letter v) if the bird's last move was south;
"<" (less-than) if the bird's last move was west

Development Strategy:
The simulator runs even if you haven't completed all the critters. The classes increase in difficulty from Ant to Bird.
We suggest doing Ant first. Look at Stone.java to see the general structure.

It will be impossible to implement each behavior if you don't have the right state in your object. As you start writing each
class, spend some time thinking about what state will be needed to achieve the desired behavior.
One thing that students in the past have found particularly difficult to understand is the various constructors for each type
of animal. Some of the constructors accept parameters that guide the behavior of later methods of the animal. It is your
job to store data from these parameters into fields of the animal as appropriate, so that it will "remember" the proper
information and will be able to use it later when the animal's other methods are called by the simulator.

Test your code incrementally. A critter class will compile even if you have not written all of the methods (the unwritten
ones will use default behavior). So add one method, run the simulator to see that it works, then add another.

Style Guidelines:
Since this assignment is largely about classes and objects, much of the style grading will be about how well you follow
proper object-oriented programming style. You should encapsulate the data inside your objects, and you should not
declare unnecessary data fields to store information that isn't vital to the state of the object. Style points will also be
awarded for expressing each critter's behavior elegantly.
Another aspect of the style of this program is inheritance. Your critter classes should properly extend the Critter
superclass as described.

Follow past style guidelines about indentation, spacing, identifiers, and localizing variables. Place comments at the
beginning of each class documenting that critter's behavior, and on any complex code. Your critters should not produce
any console output.

