
Research Topics in Networks
and Distributed Systems

Arvind Krishnamurthy

University of Washington

Research Interests

• Peer-to-peer systems

• Network security

• Privacy systems & Censorship resistance

• Data center networks

• Distributed systems

P2P Systems

• Decentralized distribution model

• Hugely popular, dozens of file-sharing and
streaming applications

• About 20% of Internet users use P2P systems

• Responsible for significant Internet traffic

Napster

• Centralized database of which nodes has
what files

• Join: on startup, client contacts central server

• Publish: client reports list of files to server

• Search: query the server for which peers have a file

• Fetch: get the file directly from the peer

• Pros: simple, search is O(1)

• What are the weaknesses?

Gnutella
• Basic idea: query flooding, no central state

• Join: client contacts a few other nodes; these
become its neighbors

• Publish: N/A

• Search: ask neighbors, who ask their neighbors,
and so on; reply to sender when found

• TTL (time-to-live) limits propagation

• Fetch: get the file directly from peer

• What are the pros/cons? How can it be
optimized?

Kazaa

• Supernode based query flooding

• Join: on startup, client contacts a “supernode” ...
may at some point become one itself

• Publish: send list of files to supernode

• Search: send query to supernode, supernodes
flood query amongst themselves.

• Fetch: get the file directly from peer(s); can fetch
simultaneously from multiple peers

Evolution of P2P incentives

• Early P2P systems did not provide contribution
incentives
• 70% of Gnutella users didn’t share

• 50% of queries answered by 1% of hosts

• Subsequent designs:
• “Incentive priorities” in Kazaa were spoofed

• Centralized accounting (MojoNation) not adopted

• BitTorrent: explicit, decentralized contribution
incentives

Incentives in BitTorrent

• A case study: did BitTorrent get it right?

• Can a strategic user game the system? – Yes

• Are BitTorrent’s incentives strong? – No

• Can we design a system with persistent and
strong incentives? – Possible, but requires careful
engineering

BitTorrent overview

P

P joins the system by obtaining a random subset
of current peers from a centralized coordinator

D
A
E

Coordinating tracker

BitTorrent overview

P

E

A

B

C

D

Content provider

BitTorrent overview

P

E

A

B

C

D

Content provider

BitTorrent overview

P

E

A

B

C

D

Content provider

BitTorrent overview

P

E

A

B

C

D

Content provider

Tit-for-tat in BitTorrent

1. Sort peers by incoming
data rate 

2. Reciprocate with top k  
e.g., k  

3. Optimistically unchoke one
other peer

4. Send each peer selected an
equal split of capacity

Peer Rate

A
C
D
E
F

17
13
8
0
0

rate

Choosing peers and rates:
Split

15
15

15

Upload capacity = 45
Equal split = 45/3 = 15

If k=2, P reciprocates
with A and C

• Key idea: maximize return on investment (RoI)

• strategic peer selection

• strategic upload rate allocation

• Cost: upload rate to peer  
Benefit: download rate from peer

• BitTyrant dynamically estimates these rates
each tit-for-tat round

Building BitTyrant

Selecting peers & rates
Each TFT round, order and reciprocate with peers:

No reciprocation:

Increase

After each round, for each peer:
If peer reciprocates:

...and continues to do so:

Reduce

direct observation

Swarms in the wild

BitTyrant improves performance in current swarms

25% of downloads finish
in half the time or less

Research Interests

• Peer-to-peer systems

• Network security

• Privacy systems & Censorship resistance

• Data center networks

• Distributed storage systems

The Internet is unsafe

• Problems in the Internet today:

• Spam: 100 billion emails/day

• DDoS attacks:

• Click fraud: 20% of clicks are fraudulent

• Phishing, identity theft, etc.

PayPalPayPal MasterCardMasterCard

Botnets

• Botnets are often the underlying infrastructure

• Network of compromised hosts

• Controlled by attacker using state-of-the-art fault
tolerant distributed mechanisms

Botnets not well understood

• Limited information on how they operate

• Most analysis is post-hoc

• Inconsistent information
“25% of all Internet-connected computers are part
of a botnet.”

 Vint Cerf

“Storm botnet has 50 million nodes.”
 Sept 2007

“Storm botnet has 20 thousand nodes.”
 Oct 2007

“Most nodes in Storm botnet are from security
researchers.”

 Apr 2008

Goal: Build BotLab
To build a system, which can,  

in a timely fashion,  
with minimum human interaction,  

monitor botnets and their propagation.

BotLab

Command & Control servers

BotLab

Command & Control servers

Captive bots

Spam, click fraud,
etc.

Malware Collection

• Augment honeypots with
active crawling of spam URLs

• 100K unique URLs/day; 1%
malicious

Incoming Spam

URLs

Message Summary DB

Relay IPs

Headers

Subject

Malware
Crawler

U
R

L
s

Archival Storage

Internet

TOR

Network Fingerprinting

• Goal: find new bots while
discarding old ones

• Execute binaries and generate
a fingerprint, which is a
sequence of flow records

• Execute both inside and
outside of VM to check for VM
detection

New Bot

Binary

Incoming Spam

URLs

Message Summary DB

Relay IPs

Headers

Subject

Malware
Crawler

Network
Fingerprinting

U
R

L
s

New VM-aware

Bot

Bot

VM

Bot

VM

Virtual Machines

Execution Engine

Archival Storage

Internet

TOR

Bot

Bare-metal

Bot

Coaxing Bots to Run

• Bots send “verification” emails
before they start sending
regular spam

• Some other bots spam using
webservices (such as HotMail)

• Bots with 100% email delivery
rate are considered suspicious

• Fortunately only O(10)
botnets; so manual tweaking
possible

Bot

VM

Bot

VM

Virtual Machines

Execution Engine

Outgoing
Spam

Bot

Bare-metal

Bot spamhole

Internet

TOR

C&C Traffic

Findings

• Botnet monitoring problem seems tractable:

• Small number of botnets (< 10) account for most of the spam

• Most spam botnets have fewer than 100K bots

• Scam hosts and C&C servers don’t change often

• Other related projects:

• How to foil malware distribution?

• How to prevent webservers from being compromised?

• How to prevent search engine pollution?

• How to integrate information from BotLab to safeguard end-
hosts?

Research Interests

• Peer-to-peer systems

• Network security

• Privacy systems & Censorship resistance

• Data center networks

• Distributed storage systems

P2P Monitoring

• Open protocols, open access ⇒ self-scaling

• Easy to monitor

• We performed a month long study of
BitTorrent:

• Tracked membership in 55,523 swarms, observed
more than 14 million peers

Goal

Can we build a P2P system that is both efficient
and privacy preserving?

Data sharing

1. Private

2. Public (not sensitive)

3. Public but without
attribution

Social network

OneSwarm sketch

OneSwarm sketch
1. Import keys
2. Connect

1. Import keys
2. Connect
3. Search

OneSwarm sketch

?

Receiver view
1. Import keys
2. Connect
3. Search
4. Transfer

Sender view
1. Import keys
2. Connect
3. Search
4. Transfer

?

Design challenges

• Controlled flooding based on workload

• Locating mobile peers

• Robustness despite sparse social networks

• Maintain performance despite long paths

OneSwarm

• Client publicly released

• Hundreds of thousands of unique users

• Flexible protocol gives users control of
privacy/performance tradeoff

Censorship

No censoring Some censorship Surveillance Heavy censors

Adversary Resilient Network Services

• To achieve censorship resistance, we can leverage
prior work on:

• Social networks ⇒ basic level of trust

• P2P systems ⇒ hide with legitimate traffic, exploit

dynamics of IP and churn

• Botnet design!

Challenges
• How to achieve good performance?

• Multi-hop overlay communication incurs high latency

• Churn could reduce availability

• Bandwidth bottlenecks at censorship boundary crossings

• How to cope with a powerful adversary?

• Can reverse engineer protocols, block bootstrapping, spoof DNS
results, and so on.

• How to provide Sybil resistance?

• Adversary will attempt to crawl the system; existing defenses
might not inspire confidence in users

• And many more...

