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Research Interests

• Peer-to-peer systems

• Network security

• Privacy systems & Censorship resistance

• Data center networks

• Distributed systems



P2P Systems

• Decentralized distribution model

• Hugely popular, dozens of file-sharing and 
streaming applications

• About 20% of Internet users use P2P systems

• Responsible for significant Internet traffic



Napster

• Centralized database of which nodes has 
what files

• Join: on startup, client contacts central server 

• Publish: client reports list of files to server

• Search: query the server for which peers have a file

• Fetch: get the file directly from the peer

• Pros: simple, search is O(1)

• What are the weaknesses?



Gnutella
• Basic idea: query flooding, no central state

• Join: client contacts a few other nodes; these 
become its neighbors

• Publish: N/A

• Search: ask neighbors, who ask their neighbors, 
and so on; reply to sender when found

• TTL (time-to-live) limits propagation

• Fetch: get the file directly from peer

• What are the pros/cons?  How can it be 
optimized?



Kazaa

• Supernode based query flooding

• Join: on startup, client contacts a “supernode” ... 
may at some point become one itself

• Publish: send list of files to supernode

• Search: send query to supernode, supernodes 
flood query amongst themselves.

• Fetch: get the file directly from peer(s); can fetch 
simultaneously from multiple peers



Evolution of P2P incentives

• Early P2P systems did not provide contribution 
incentives
• 70% of Gnutella users didn’t share 

• 50% of queries answered by 1% of hosts

• Subsequent designs:
• “Incentive priorities” in Kazaa were spoofed

• Centralized accounting (MojoNation) not adopted

• BitTorrent: explicit, decentralized contribution 
incentives



Incentives in BitTorrent

• A case study: did BitTorrent get it right?

• Can a strategic user game the system? – Yes

• Are BitTorrent’s incentives strong? – No

• Can we design a system with persistent and 
strong incentives? – Possible, but requires careful 
engineering 



BitTorrent overview
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Tit-for-tat in BitTorrent

1. Sort peers by incoming 
data rate 

2. Reciprocate with top k  
e.g.,  k                

3. Optimistically unchoke one 
other peer

4. Send each peer selected an 
equal split of capacity

Peer Rate
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Upload capacity = 45
Equal split = 45/3 = 15

If k=2, P reciprocates 
with A and C



• Key idea: maximize return on investment (RoI)

• strategic peer selection

• strategic upload rate allocation

• Cost: upload rate to peer  
Benefit: download rate from peer 

• BitTyrant dynamically estimates these rates 
each tit-for-tat round

Building BitTyrant



Selecting peers & rates
Each TFT round, order and reciprocate with peers:

No reciprocation:

Increase

After each round, for each peer:
If peer reciprocates:

...and continues to do so:

Reduce

direct observation



Swarms in the wild

BitTyrant improves performance in current swarms

25% of downloads finish 
in half the time or less
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The Internet is unsafe

• Problems in the Internet today:

• Spam: 100 billion emails/day

• DDoS attacks: 

• Click fraud: 20% of clicks are fraudulent

• Phishing, identity theft, etc.

PayPalPayPal MasterCardMasterCard



Botnets

• Botnets are often the underlying infrastructure

• Network of compromised hosts

• Controlled by attacker using state-of-the-art fault 
tolerant distributed mechanisms



Botnets not well understood

• Limited information on how they operate

• Most analysis is post-hoc

• Inconsistent information
“25% of all Internet-connected computers are part 
of a botnet.”

                                       Vint Cerf

“Storm botnet has 50 million nodes.”
                                       Sept 2007

“Storm botnet has 20 thousand nodes.”
                                       Oct 2007

“Most nodes in Storm botnet are from security 
researchers.”

                                       Apr 2008



Goal: Build BotLab
To build a system, which can,  

in a timely fashion,  
with minimum human interaction,  

monitor botnets and their propagation. 



BotLab

Command & Control servers



BotLab

Command & Control servers

Captive bots

Spam, click fraud,
etc.



Malware Collection

• Augment honeypots with 
active crawling of spam URLs

• 100K unique URLs/day;  1% 
malicious
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Network Fingerprinting

• Goal: find new bots while 
discarding old ones

• Execute binaries and generate 
a fingerprint, which is a 
sequence of flow records

• Execute both inside and 
outside of VM to check for VM 
detection
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Coaxing Bots to Run

• Bots send “verification” emails 
before they start sending 
regular spam

• Some other bots spam using 
webservices (such as HotMail)

• Bots with 100% email delivery 
rate are considered suspicious

• Fortunately only O(10) 
botnets; so manual tweaking 
possible
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Findings

• Botnet monitoring problem seems tractable:

• Small number of botnets (< 10) account for most of the spam

• Most spam botnets have fewer than 100K bots

• Scam hosts and C&C servers don’t change often

• Other related projects: 

• How to foil malware distribution?  

• How to prevent webservers from being compromised?

• How to prevent search engine pollution?

• How to integrate information from BotLab to safeguard end-
hosts?



Research Interests

• Peer-to-peer systems

• Network security

• Privacy systems & Censorship resistance

• Data center networks

• Distributed storage systems



P2P Monitoring

• Open protocols, open access ⇒ self-scaling

• Easy to monitor

• We performed a month long study of 
BitTorrent:

• Tracked membership in 55,523 swarms, observed 
more than 14 million peers



Goal

Can we build a P2P system that is both efficient 
and privacy preserving?



Data sharing

1. Private

2. Public (not sensitive)

3. Public but without 
attribution



Social network

OneSwarm sketch
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1. Import keys
2. Connect
3. Search

OneSwarm sketch



?

Receiver view
1. Import keys
2. Connect
3. Search
4. Transfer



Sender view
1. Import keys
2. Connect
3. Search
4. Transfer

?



Design challenges

• Controlled flooding based on workload

• Locating mobile peers

• Robustness despite sparse social networks

• Maintain performance despite long paths



OneSwarm

• Client publicly released

• Hundreds of thousands of unique users

• Flexible protocol gives users control of 
privacy/performance tradeoff



Censorship

No censoring Some censorship Surveillance Heavy censors



Adversary Resilient Network Services

• To achieve censorship resistance, we can leverage 
prior work on:

• Social networks ⇒ basic level of trust

• P2P systems ⇒ hide with legitimate traffic, exploit 

dynamics of IP and churn

• Botnet design!



Challenges
• How to achieve good performance?

• Multi-hop overlay communication incurs high latency

• Churn could reduce availability

• Bandwidth bottlenecks at censorship boundary crossings

• How to cope with a powerful adversary?

• Can reverse engineer protocols, block bootstrapping, spoof DNS 
results, and so on.

• How to provide Sybil resistance?

• Adversary will attempt to crawl the system; existing defenses 
might not inspire confidence in users

• And many more...


