What Next? Python, Java, CSE Courses

Andrew S Fitz Gibbon

UW CSE 160

Winter 2022

We want your feedback!

- Please fill out evaluations for lecture AND for section
 - The link for lecture is <u>here</u>.

– https://uw.iasystem.org/survey/253748

There is more to learn!

- You have come a long way from the first day of class!
 - But there is more to learn!
- Data analysis, data science, and data visualization
- Scaling up:
 - Larger and more complex programs
 - Algorithm selection
 - "Big data": out-of-memory data, parallel programming, ...
- Ensuring correctness
 - Principled, systematic design, testing, and programming
 - Coding style
- Managing complexity
 - Programming tools: testing, version control, debugging, deployment
 - Graphical User Interfaces (GUIs), user interaction
 - Data structures and algorithms
 - Working in a team

More UW Computer Science Courses!!

You could take any of these now!

- CSE 163 Intermediate Data Programming
- CSE <u>142</u>, <u>143</u>, <u>143x</u> Programming in Java (143x only in fall)
- <u>CSE 154</u> Web Programming
- CSE/STAT 416 Intro to Machine Learning (requires Stat 311/390)
- INFO/STAT/CSE 180 Intro to Data Science (some Math pre-req)

Require CSE 143:

- CSE 373 Data Structures & Algorithms (all year)
- CSE 412 Intro to Data Visualization (requires CSE 143 or CSE 163)
- CSE 414 Databases
- CSE 374 Intermediate Programming Concepts & Tools

Require **CSE 373**:

- <u>CSE 410</u> Computer Systems (Operating Systems & Architecture)
- CSE 413 Programming Languages and their Implementation
- CSE 415 Artificial Intelligence
- CSE 417 Algorithms and Complexity

More Info on UW CSE Courses!!

- Which Course should I take:
 - https://courses.cs.washington.edu/courses/cse160/22wi/which-class/

- Intro CSE courses:
 - https://www.cs.washington.edu/academics/ugrad/nonmajor-options/intro-courses

More Python Resources

- More Python practice:
 - https://courses.cs.washington.edu/courses/cse160/22wi/computing/
- Runestone free interactive textbooks:
 - How to Think Like a Computer Scientist
 (the "Try" text we <u>used this quarter</u>)
 https://runestone.academy/runestone/books/published/thinkcspy/index.html
 - Problem Solving with Algorithms and Data Structures using Python
 - https://runestone.academy/runestone/static/pythonds/index.html

Why the Python language?

	Python	Excel	MATLAB	R	C/C++	Java
Readable syntax	©	©		©	(3)	©
Easy to get started						
Powerful libraries		<u>—</u>			<u>—</u>	

Comparison of Python with Java

- Python is better for learning programming
- Python is better for small programs
- Java is better for large programs

Main difference: dynamic vs. static typing

- Dynamic typing (Python): put anything in any variable
- Static typing (Java):
 - Source code states the type of the variable
 - Cannot run code if any assignment might violate the type