
Sets

Andrew S. Fitz Gibbon
UW CSE 160
Winter 2022

1

Sets

• Mathematical set: a collection of values, without
duplicates or order

• Order does not matter
{ 1, 2, 3 } == { 3, 2, 1 }

• No duplicates
{ 3, 1, 4, 1, 5 } == { 5, 4, 3, 1 }

• For every data structure, ask:
– How to create
– How to query (look up) and perform other operations

• (Can result in a new set, or in some other datatype)
– How to modify
Answer: http://docs.python.org/3/library/stdtypes.html#set

3

2

1

1

4

3

5

2

http://docs.python.org/3/library/stdtypes.html

Two ways to create a set

1. Direct mathematical syntax:
odd = {1, 3, 5}
prime = {2, 3, 5}
Note: Cannot use “{}” to express empty set: it
means empty dictionary! Use set() instead.

2. Construct from a list: (also from a tuple or string)

odd = set([1, 3, 5])
prime = set([2, 3, 5])
empty = set([]) # or set()

3

Set operations
odd = {1, 3, 5}
prime = {2, 3, 5}

• membership Î Python: in 4 in prime Þ False
• union È Python: | odd | prime Þ {1, 2, 3, 5}
• intersection Ç Python: & odd & prime Þ {3, 5}
• difference \ or - Python: - odd – prime Þ {1}

Think in terms of set operations,
not in terms of iteration and element operations

– Shorter, clearer, less error-prone, faster

Although we can do iteration over sets:
iterates over items in arbitrary order
for item in myset:
…

But we cannot index into a set to access a specific element. 4

Practice with sets
z = {5, 6, 7, 8}
y = {1, 2, 3, 1, 5}
k = z & y
j = z | y
m = y – z
n = z – y

5

See in python tutor

http://www.pythontutor.com/visualize.html

Modifying a set
• Add one element to a set:

myset.add(newelt)
myset = myset | {newelt}

• Remove one element from a set:
myset.remove(elt) # elt must be in myset or raises error
myset.discard(elt) # never errors
myset = myset - {elt}
What would this do?
myset = myset – elt

• Remove and return an arbitrary element from a set:
myset.pop()

6Note: add, remove and discard all return None

Practice with sets
z = {5, 6, 7, 8}
y = {1, 2, 3, 1, 5}
p = z
q = set(z) # Makes a copy of set z
z.add(9)
q = q | {35}
z.discard(7)
q = q – {6, 1, 8}

7

See in python tutor

http://www.pythontutor.com/visualize.html

Aside: List vs. set operations (1)
Find the common elements in both list1 and list2:
out1 = []
for elem in list2:

if elem in list1:
out1.append(elem)

Find the common elements in both set1 and set2:
set1 & set2

Much shorter, clearer, easier to write with sets!
8

Aside: List vs. set operations(2)
Find elements in either list1 or list2 (or both) (without duplicates):
out2 = list(list1) # make a copy
for elem in list2:

if elem not in list1: # don’t append elements already in out2
out2.append(elem)

Another way:
out2 = list1 + list2 # if an item is in BOTH lists, it will appear TWICE!
for elem in out1: # out1 = common elements in both lists

out2.remove(elem) # Remove common elements, leaving just a single copy

Find the elements in either set1 or set2 (or both):
set1 | set2

9

Aside: List vs. set operations(3)
Find the elements in either list but not in both:
out3 = []
out2 = list1 + list2 # if an item is in BOTH lists, it will appear TWICE!
for elem in out2:

if elem not in list1 or elem not in list2:
out3.append(elem)

--
Find the elements in either set but not in both:
set1 ^ set2

10

Not every value may be placed in a set

• Set elements must be immutable values
– int, float, bool, string, tuple
–not: list, set, dictionary

• The set itself is mutable (e.g. we can add
and remove elements)

• Aside: frozenset must contain immutable values and is itself immutable
(cannot add and remove elements)

11

