
File I/O

Andrew S. Fitz Gibbon
UW CSE 160
Winter 2022

1

File Input and Output

• As a programmer, when would one use a file?
• As a programmer, what does one do with a file?

2

Files store information
when a program is not running

Important operations:
• open a file

• close a file

• read data

• write data

3

Files and filenames
• A file object represents data on your disk drive
– It is an object in your Python program that you create
– Can read from it and write to it in your program

• A filename (usually a string) states where to find
the data on your disk drive
– Can be used to find/create a file
– Examples of filenames:

• Linux/Mac:"/home/efg/class/160/lectures/file_io.pptx"
• Windows:"C:\Users\efg\My Documents\cute_dog.jpg"
• Linux/Mac: "homework3/images/Husky.png"
• "Husky.png"

4

Two types of filenames
An Absolute filename gives a specific location on disk:
• "/home/efg/class/160/21au/lectures/file_io.pptx"
• "C:\Users\efg\My Documents\homework3\images\Husky.png"

– Starts with “/” (Unix) or “C:\” (Windows)
– Warning: code will fail to find the file if you move or rename files or

run your program on a different computer

A Relative filename gives a location relative to the current working
directory:
• "lectures/file_io.pptx"
• "images\Husky.png"
• "data\test-small.fastq"

– Warning: code will fail to find the file unless you run your program
from a directory that contains the given contents

• A relative filename is usually a better choice

5

Examples

Linux/Mac: These could all refer to the same file:
"/home/efg/class/160/homework3/images/Husky.png"

"homework3/images/Husky.png"
"images/Husky.png"
"Husky.png“

Windows: These could all refer to the same file:
"C:\Users\efg\My Documents\class\160\homework3\images\Husky.png"
"homework3\images\Husky.png"
"images\Husky.png"
"Husky.png"

6

Aside: “Current Working Directory” in Python

Current Working Directory - the directory from which you ran
Python
To determine it from a Python program:

import os
print("The current working directory is", os.getcwd())

Might print:
'/Users/johndoe/Documents'

7

os stands for
“operating system”

Opening a file in python
To open a file for reading:
Open takes a filename and returns a file object.
This fails if the file cannot be found & opened.
myfile = open("datafile.dat")
• Or equivalently:
myfile = open("datafile.dat", "r")

To open a file for writing:
Will create datafile.dat if it does not already
exist, if datafile.dat already exists, then it
will be OVERWRITTEN
myfile = open("datafile.dat", "w")
If datafile.dat already exists, then we will
append what we write to the end of that file
myfile = open("datafile.dat", "a")

8

By default, file is
opened for reading

Reading a file in python
Open takes a filename and returns a file object.
This fails if the file cannot be found & opened.
myfile = open("datafile.dat")

Approach 1: Process one line at a time
for line_of_text in myfile:
… process line_of_text

Approach 2: Process entire file at once
all_data_as_a_big_string = myfile.read()

myfile.close() # close the file when done reading

Assumption: file is a sequence of lines
Where does Python expect to find this file (note the relative pathname)?

9

Simple Reading a file Example
Reads in file one line at a time and
prints the contents of the file.
in_file = "student_info.txt"
myfile = open(in_file)
for line_of_text in myfile:

print(line_of_text)
myfile.close()

10

Reading a file Example
Count the number of words in a text file
in_file = "thesis.txt"
myfile = open(in_file)
num_words = 0
for line_of_text in myfile:

word_list = line_of_text.split()
num_words += len(word_list)

myfile.close()

print("Total words in file: ", num_words)

11

Reading a file multiple times
You can iterate over a list as many times as
you like:
mylist = [3, 1, 4, 1, 5, 9]
for elt in mylist:

… process elt
for elt in mylist:

… process elt

Iterating over a file uses it up:
myfile = open("datafile.dat")
for line_of_text in myfile:

… process line_of_text
for line_of_text in myfile:

… process line_of_text

How to read a file multiple times?
Solution 1: Read into a list, then iterate over
it
myfile = open("datafile.dat")
mylines = []
for line_of_text in myfile:

mylines.append(line_of_text)
for line_of_text in mylines:

… process line_of_text
for line_of_text in mylines:

… process line_of_text

Solution 2: Re-create the file object
(slower, but a better choice if the file does not
fit in memory)
myfile = open("datafile.dat")
for line_of_text in myfile:

… process line_of_text
myfile = open("datafile.dat")
for line_of_text in myfile:

… process line_of_text
12

This loop body will
never be executed!

In general, try to avoid reading a file more than one time. Reading files is slow.

Writing to a file in python
Replaces any existing file of this name
myfile = open("output.dat", "w")

Similar to printing output
myfile.write("a bunch of data")
except you must add newline if desired
myfile.write("a line of text\n")
and the argument must be a string
myfile.write(4)
myfile.write(str(4))

myfile.close()

open for Writing
(no argument, or
"r", for Reading)

“\n” means
end of line
(Newline)

Incorrect; results in:
TypeError: expected a character
buffer object

Correct. Argument
must be a string

13

close when done
with all writing

Next thing written will
be on this same line.

Count the number of words in a text file and
make a list of all the words in the file

num_words = 0
word_list = []
silly_file = open("silly.txt", "r")
for line in silly_file:

print(line, end="")

what should come next? (Hint: use split())

silly_file.close()
print("Total words in file: ", num_words)

14

This is a silly file.
Here is some more silly text.
And even another silly line.
The fourth silly line.

16

