
Testing

Ruth Anderson

UW CSE 160

Autumn 2022

1

Testing

• Programming to analyze data is powerful

• It’s useless (or worse!) if the results are not
correct

• Correctness is far more important than speed

2

Famous examples

• Ariane 5 rocket (1996)

➢ fault in the software in the
inertial navigation system (link)

• Therac-25 radiation therapy
machine (1986/1987)

➢ Fatal overdose due to
software bugs and no external
controls (link)

3

https://hownot2code.com/2016/09/02/a-space-error-370-million-for-an-integer-overflow/
https://www.computer.org/csdl/mags/co/2017/11/mco2017110008.pdf

More recent examples

4

Testing does not prove correctness

“Program testing can be used to show the presence
of bugs, but never to show their absence!”

- Edsger Dijkstra

• Testing can only increase our confidence in
program correctness.

• Exhaustive testing (e.g. testing all possible
inputs) is generally not possible

• Instead we have to be smart about testing

5

Testing ≠ debugging

• Testing: determining whether your program is
correct
– Doesn’t say where or how your program is

incorrect

• Debugging: locating the specific defect in
your program, and fixing it
2 key ideas:

– divide and conquer

– the scientific method

6

Testing your program

• How do you know your program is right?

– Compare its output to a correct output

• How do you know a correct output?

– Real data is big

– You wrote a computer program because it is not
convenient to compute it by hand

• Use small inputs so you can compute the expected
output by hand

– We did this in HW2, HW3 & HW4 with small data sets

7

Testing parts of your program

• Often called “unit testing”

• Testing that the output of individual functions
is correct.

8

How to write a test

• An example test for sum:

assert sum([1, 2, 3]) == 6

9

Call the function

How to write a test

• An example test for sum:

assert sum([1, 2, 3]) == 6

10

Input (sometimes
called “test data”)

• Input should be simple, easy to calculate the
expected output by hand

How to write a test

• An example test for sum:

assert sum([1, 2, 3]) == 6

11

Expected output

How to write a test

• An example test for sum:

assert sum([1, 2, 3]) == 6

12

Ask Python to do
the check for us

• assert True does nothing
• assert False crashes the program

• and prints a message

How to write a test

• An example test for sqrt:

assert sqrt(2) == 1.41421356237…

13

• Is this a proper way to test this function?

How to write a test

• An example test for sqrt:

assert sqrt(2) == 1.41421356237…

assert math.abs(sqrt(2) – 1.414) < 0.001

14

• Be careful about floating point comparison!
• See example from lecture

https://courses.cs.washington.edu/courses/cse160/22au/lectures/hw4-examples/bad_float.py

How to write a good test suite

• Test suite: a collection of test cases used to test
a program

• Property:

– Good coverage of input space

– Good coverage of code execution (do not always
know what the code is beforehand)

– Address boundary cases

15

Example (input space coverage)

def abs(x):

"""

Takes in an integer x and returns the absolute

value of that integer.

"""

if x > 0:

return x

else:

return –x

What are the possible categories of values x can take?
x > 0, x < 0, or x = 0

16

Example (code coverage)

def abs(x):

"""

Takes in an integer x and returns the absolute

value of that integer.

"""

if x > 0:

return x

else:

return –x

What are the possible paths to go through this function?

17

Example (code coverage)

def abs(x):

"""

Takes in an integer x and returns the absolute

value of that integer.

"""

if x > 0:

return x

else:

return –x

assert abs(5) == 5

18

Example (code coverage)

def abs(x):

"""

Takes in an integer x and returns the absolute

value of that integer.

"""

if x > 0:

return x

else:

return –x

assert abs(-2) == 2

19

Example (code coverage)

def abs(x):

"""

Takes in an integer x and returns the absolute

value of that integer.

"""

if x > 0:

return x

else:

return –x

assert abs(5) == 5

assert abs(-2) == 2

20

Example (code coverage)

def abs(x):

"""

Takes in an integer x and returns the absolute

value of that integer.

"""

if x > 1:

return x

else:

return –x

assert abs(5) == 5 # pass

assert abs(-2) == 2 # pass

100% code coverage, but abs(1) won't produce the right output!

21

A bug!

Example (boundary cases)

def abs(x):

"""

Takes in an integer x and returns the absolute

value of that integer.

"""

if x > 0:

return x

else:

return –x

What are the possible boundary cases to test?

assert abs(0) == 0

22

Coming up with good test cases

• Think about and test “corner cases”
– Numbers:

• int vs. float values (remember not to test for equality with
floats)

• Zero
• Negative values

– Lists:
• Empty list
• Lists containing duplicate values (including all the same

value)
• Lists in ascending order/descending order
• Mix of types in list (if specification does not rule out)

23

How to write a good test suite

• Test suite: a collection of test cases used to test
a program

• Property:

– Good coverage of input space

– Good coverage of code execution (do not always
know what the code is beforehand)

– Address boundary cases

24

Another example (discussion)

def find_max(lst):

"""

Takes in a list of integers lst and

returns the maximum value in the list. If

the list is empty, return None.

"""

25

Testing approaches

• Black box testing - Choose test data without looking at
the implementation, just test behavior mentioned in
the specification (or doc-string)

• Glass box (white box, clear box) testing -Choose test
data with knowledge of the implementation. Test that
all paths through your code are exercised and correct.
Examples:
– If statement with several elifs, make sure your test cases

will execute all branches

– For loop, test if it is executed never, once, >1, max times

26

Tests prevent you from introducing errors
when you modify a function body

• Regression testing

– Whenever you find a bug (not from an existing test)

• Add a new test case with the input that exposes the bug
and the expected output to the test suite

• Verify that the test suite fails

• Fix the bug

• Verify the fix

– Do NOT remove tests - protects against
reintroducing the same bug later

27

When to write tests

• Two possibilities:

– Write code first, then write tests

– Write tests first, then write code

• It’s best to write tests first

• If you write the code first, you remember the implementation while
writing the tests (confirmation bias!)

– You are likely to make the same mistakes that you made in the
implementation (e.g. assuming that negative values would never be
present in a list of numbers)

• If you write the tests first, you will think more about the functionality than
about a particular implementation

– You might notice some aspect of behavior that you would have made a
mistake about, some special case of input that you would have
forgotten to handle

28

Where to write test cases

• At the top level: is run every time you load your program
def hypotenuse(a, b):

… body of hypotenuse …

assert hypotenuse(3, 4) == 5

assert hypotenuse(5, 12) == 13

• In a test function: is run when you invoke the function
def hypotenuse(a, b):

… body of hypotenuse …

def test_hypotenuse():

assert hypotenuse(3, 4) == 5

assert hypotenuse(5, 12) == 13

test_hypotenuse()

29

(As in HW 2)

(As in HW 3 & 4)

What not to test

• Input types not described in the specification

def abs(a):

"""

Takes in an integer and returns the absolute value

of that integer.

"""

Example of unnecessary tests:

abs(0.01)

abs('hi')

abs([])

30

What not to test

• Function behaviors not described in the specification

def roots(a, b, c):

"""

Returns a list of the two roots of ax**2 + bx + c = 0.

"""

What is wrong with this test?

assert roots(1, 0, -1) == [-1, 1]

The specification did not imply that this should be the order these
two roots are returned.

31

Write the whole test

• A common mistake:
1. Write the function
2. Make up test inputs
3. Run the function
4. Use the result as the expected output – BAD!!

• You didn’t write a full test: only half of a test!
– Created the tests inputs, but not the expected output

• The test does not determine whether the
function is correct
– Only determines that it continues to be as correct (or

incorrect) as it was before

32

It's HARD to write good tests!

• Requires:

– Good understanding of specification and function
behavior with different inputs

– Overcoming confirmation bias (especially if you
have already written the code)

• Adopt an adversarial mindset

33

• Use assertions throughout your code

• Documents what you think is true about your
algorithm
– E.g., assert 0 <= index < len(my_list)

• Lets you know immediately when something
goes wrong

– The longer between a code mistake and the
programmer noticing, the harder it is to debug

34

Assertions are not just for test cases

Assertions make debugging easier

• Common, but unfortunate, course of events:
– Code contains a mistake (incorrect assumption or algorithm)
– Intermediate value (e.g., in local variable, or result of a function

call) is incorrect
– That value is used in other computations, or copied into other

variables
– Eventually, the user notices that the overall program produces a

wrong result
– Where is the mistake in the program? It could be anywhere.

• Suppose you had 10 assertions evenly distributed in your
code
– When one fails, you can localize the mistake to 1/10 of your

code (the part between the last assertion that passes and the
first one that fails)

35

Where to write assertions

• Function entry: are arguments of expected
type/size/value/shape?
– Place blame on the caller before the function fails

• Function exit: is result correct?

• Places with tricky or interesting code

• Assertions are ordinary statements; e.g., can
appear within a loop:
for n in my_numbers:

assert type(n) == int or type(n) == float

36

Where not to write assertions

• Don’t clutter the code
– (Same rule as for comments)

• Don’t write assertions that are certain to succeed
– The existence of an assertion tells a programmer that it

might possibly fail
a = 5

assert a == 5 # Not needed!

• Don’t need to write an assertion if the following code
would fail informatively:

assert type(name) == str

print("Hello, " + name)

• Write assertions where they may be useful for
debugging

37

Conclusion

• Testing doesn't prove correctness, only
increase confidence in program correctness

• Writing a good test suite is hard, but can use
heuristics including:
– Good coverage of input space

– Good coverage of code execution (not always known
beforehand)

– Address boundary cases

• Write tests before you write the code!

• Good tests help with debugging

38

Next step ☺

• Try adding more tests for your homework!

– Only after you make sure you know what the
function behavior should be, of course…

• Add more tests for the final exam!

– Our provided tests won't cover all cases - up to
you to read the specification carefully and add
more tests!

39

