Sorting

Ruth Anderson
UW CSE 160
Autumn 2022

sorted vs. sort

e sorted() -is a function that takes an iterable as a
parameter (e.g. sequence types: list, string, tuple) and returns
a sorted version of that parameter
.sort () - is a method that sorts the list that it is called
on in-place (and returns None). .sort () can only be called
on lists

my_lSt = [5’ 3’ 4’ 2] !Returnsanewsortedlist
print (sorted (my 1lst)) - [2, 3, 4, 5]

print (my 1lst) > [5, 3, 4, 2] <~

Does not modify original
my lst.sort()
print(my_lst)k > [2, 3, 4, 5]

list
Modifies the list in place, returns None

See in python tutor

sorted vs. sort example

hamlet = "to be or not to be that is the
question whether tis nobler in the mind to
suffer".split()

Returns a new sorted
list (does not modify
the original list)

print ("hamlet:", hamlet)

print ("sorted (hamlet) :", sorted(hamlet))
print ("hamlet:", hamlet)

print ("hamlet.sort () :", hamlet.sort())
print ("hamlet:", hamlet)

Modifies the list in
place, returns None

e Lists are mutable —they can be changed
— including by functions

http://www.pythontutor.com/visualize.html#code=hamlet%20%3D%20%22to%20be%20or%20not%20to%20be%20that%20is%20the%20question%20whether%20tis%20nobler%20in%20the%20mind%20to%20suffer%22.split%28%29%0A%0Aprint%28%22hamlet%3A%22,%20hamlet%29%0A%0Aprint%28%22sorted%28hamlet%29%3A%22,%20sorted%28hamlet%29%29%0Aprint%28%22hamlet%3A%22,%20hamlet%29%0A%0Aprint%28%22hamlet.sort%28%29%3A%22,%20hamlet.sort%28%29%29%0Aprint%28%22hamlet%3A%22,%20hamlet%29&cumulative=false&curInstr=0&heapPrimitives=false&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

See in python tutor

Customizing the sort order

Goal: sort a list of names by last name

names = ["Isaac Newton", "Albert Einstein", "Niels
Bohr", '"Marie Curie", '"Charles Darwin'", '"Louils
Pasteur", "Galileo Galilei", '"Margaret Mead"]

print ("names:", names)
This does not work:

print ("sorted (names) :", sorted(names))

When sorting, how should we compare these names?

"Niels Bohr"
"Charles Darwin"

http://www.pythontutor.com/visualize.html#code=names%20%3D%20%5B%22Isaac%20Newton%22,%20%22Albert%20Einstein%22,%20%22Niels%20Bohr%22,%20%22Marie%20Curie%22,%20%22Charles%20Darwin%22,%20%22Louis%20Pasteur%22,%20%22Galileo%20Galilei%22,%20%22Margaret%20Mead%22%5D%0A%0Aprint%28%22names%3A%22,%20names%29%0Aprint%28%22sorted%28names%29%3A%22,%20sorted%28names%29%29&cumulative=false&curInstr=0&heapPrimitives=false&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

See in python tutor

Aside: What does this do?

def mystery (msg) :
return msg.split (" ") [1]

x = mystery ("happy birthday")
print (x)

https://tinyurl.com/btt8efx2

See in python tutor

Sort key

* Asort key is a function that can be called
on each list element to extract/create a
value that will be used to make
comparisons.

fruits = ["watermelon", "fig", "apple"]

print (sorted (fruits))
print (sorted(fruits, key=len))

http://www.pythontutor.com/visualize.html#code=fruits%20%3D%20%5B%22watermelon%22,%20%22fig%22,%20%22apple%22%5D%0Aprint%28sorted%28fruits%29%29%0Aprint%28sorted%28fruits,%20key%3Dlen%29%29%0A%0A&cumulative=false&curInstr=0&heapPrimitives=false&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

See in python tutor

Sort key

A sort key is a function that can be called on each list element
to extract/create a value that will be used to make
comparisons.

 We can use this to sort on a value (e.g. “last_name”) other
than the actual list element (e.g. “first_name last_name”).

 We could use the following function as a sort key to help us
sort by last names:

def last name (name) :
return name.split(" ") [1]

print('last name ("Isaac Newton"):', last name("Isaac Newton"))

https://tinyurl.com/4rw53fps

See in python tutor

Use a sort key as the key argument

Supply the key argument to the sorted function or the sort function

def last name (name) :
return name.split (" ") [1]

names = ["Isaac Newton", "Ada Lovelace", "Fig Newton", "Grace Hopper'"]

print (sorted(names, key=last name))
print (sorted (names, key=len)) \\~§§§=:::;;;r\“
If there is a tie in last

names, preserves
def last name len(name): original order of values.

return len(last name (name))

print (sorted(names, key=last name len))

https://tinyurl.com/v3fuzbww

See in python tutor

itemgetter is a function
that returns a function

Useful for creating a function that will return particular elements
from a sequence (e.g. list, string, tuple):

Returns a function Call function passing in

this list as an argument

import operato

operator.itemgetter (2) () - 8
operator.itemgetter (0) () > 7
operator.itemgetter (1) () - 3
operator.itemgetter (0, 1) () 2> (7, 3)
operator.itemgetter (3) () >

IndexError: list index out of range

Read the Documentation:
https://docs.python.org/3/library/operator.html

https://tinyurl.com/yxemz2vy

Tuples

e Immutable

— cannot change elements
e Create using|()
e Use square brackets

— to query and slice

student score = ('Robert', 8)

See in python tutor

itemgetter Exercise

import operator

1stl = [2, 7, 3, 9, 4]

print (operator.itemgetter (1) (1stl))

print (operator.itemgetter (1, 2) (1stl))

print (operator.itemgetter (2, 3) (1stl))

tup2 = operator.itemgetter (3, 2, 1, 0) (1lstl)
print (tup2)

print (operator.itemgetter (0) (tup2))

get second = operator.itemgetter (1)

print (get second(tup2))

print (operator.itemgetter (2) ("howdy"))
print (operator.itemgetter (2, 0, 1) ("howdy")) "

https://tinyurl.com/w9s842d3

Two ways to Import 1temgetter

import operator / A tuple

student score = ('Robert', 8)
operator.itemgetter (0) (student score) = “Robert”
operator.itemgetter(l) (student score) — 8

Or

Another way to import,

allows you to call
itemgetterdirectly.

from operator import itemgetter<I

student score = ('Robert', 8)
itemgetter (0) (student score) = “Robert”
itemgetter (l) (student score) — 8

12

See in python tutor

Using itemgetter

Another way to import,

allows you to call
itemgetter directly.

from operator import itemgetter-::::;

student score = ('Robert', 8)
itemgetter (0) (student score) = “Robert”

sorted (student scores)
return?

itemgetter(l) (student score) = 8 !wmnmms

student_scores =

[('Robert', 8), ('Alice', 9), ('Tina', 7)]

Sort the list by name:
sorted(student scores, key=itemgetter (0))

Sort the list by score

sorted (student scores, key=itemgetter(l))

13

https://tinyurl.com/3mh9tf8m

See in python tutor

Sorting based on two criteria

Goal: sort based on score;
if there is a tie within score, sort by name

Two approaches:
Approach #1: Use an itemgetter with two arguments
Approach #2: Sort twice (most important sort last)

student scores = [('Robert', 8), ('Alice',6 9),
('Tina', 10), ('James',6 8)]
Approach #1:

sorted (student scores, key=itemgetter(1l,0))

Approach #2:

sorted by name = sorted(student scores, key=itemgetter (0))
sorted by score = sorted(sorted by name, key=temgetter(l))

14

https://tinyurl.com/y34cle6s

Sort on most important criteria LAST

e Sorted by score (ascending), when there is a tie
on score, sort using name

from operator import itemgetter
student scores = [('Robert', 8), ('Alice', 9), ('Tina', 10), ('James',6 8)]

sorted by name = sorted(student_scores, key=itemgetter (0))
>>> sorted by name

[('Alice', 9), ('James', 8), ('Robert', 8), ('Tina', 10)]

sorted by score = sorted(sorted by name, key=itemgetter(l))
>>> sorted by score
[('TJames', 8), ('Robert', 8), ('Alice', 9), ('Tina', 10)]

15

See in python tutor

More sorting based on two criteria

If you want to sort different criteria in different directions, you
must use multiple calls to sort or sorted

student scores = [('Robert', 8), ('Alice',6 9), \
('Tina', 10), ('James', 8)]

Goal: sort score from highest to lowest; if there is a tie within score,
sort by name alphabetically (= lowest to highest)

sorted by name = sorted(student scores, key=itemgetter (0))
sorted by hi score = sorted(sorted by name,
key=itemgetter(l), reverse=True)

Remember: Sort on mostimportant criteria LAST 1o

https://tinyurl.com/y65gs8m3

See in python tutor

Sorting Exercise

from operator import itemgetter

student scores = [('Ann', 7), ('Raul', 6), ('Ted',6 4),
('Lisa', 6)]

print (sorted(student scores, key=itemgetter(l)))

lst a = sorted(student scores, key=itemgetter (0))
print (lst a)

lst b = sorted(lst a, key=itemgetter(l))

print (1lst b)

lst ¢ = sorted(lst a, key=itemgetter(l), reverse=True)

print (lst c)

17

https://tinyurl.com/kc7tek45

Digression: Lexicographic Order

"Aaron'
"Andrew'
'Angie'’

'with'
'withhold'
'withholding'

'"Able'
'"Charlie'
'baker'
'delta'

1,9,9]
2, 1]
3]

18

Sorting: strings vs. numbers

e Sorting the powers of 5:

>>> sorted([125, 5, 3125, 625, 25])

[5, 25, 125, 625, 3125]

>>> sorted(["125", "5", "3125", "625", "25"])
['125', '25', '3125', '5', '625']

19

See in python tutor

Aside: Use a sort key to create a new lis

Create a different list that contains the value returned by the sort key, sort it,
then extract the relevantpart:

names = ["Isaac Newton", "Fig Newton", '"Niels Bohr"]

keyed names will be a list of [lastname, fullname] lists

keyed names = [] 1) Create the new list.

for name in names:

keyed names.append([last name (name) , name]) | 2)sSort the new list.

If there is a tie in last
names, sort by next

sorted keyed names = sorted(keyed names) e Ll = T ol e

sorted names = []

for keyed name in sorted keyed names:
sorted names.append (keyed name[1l])—————

3) Extract the relevant part.

print("sorted names:", sorted names)

20

https://tinyurl.com/y2yq7h7s

