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sorted vs. sort

e sorted( ) -is a function that takes an iterable as a
parameter (e.g. sequence types: list, string, tuple) and returns
a sorted version of that parameter
.sort () - is a method that sorts the list that it is called
on in-place (and returns None). .sort () can only be called
on lists

my_lSt = [5’ 3’ 4’ 2] !Returnsanewsortedlist
print (sorted (my 1lst)) - [2, 3, 4, 5]

print (my 1lst) > [5, 3, 4, 2] <~

Does not modify original
my lst.sort()
print(my_lst)k > [2, 3, 4, 5]

list
Modifies the list in place, returns None




See in python tutor

sorted vs. sort example

hamlet = "to be or not to be that is the
question whether tis nobler in the mind to
suffer".split()

Returns a new sorted
list (does not modify
the original list)

print ("hamlet:", hamlet)

print ("sorted (hamlet) :", sorted(hamlet))
print ("hamlet:", hamlet)

print ("hamlet.sort () :", hamlet.sort())
print ("hamlet:", hamlet)

Modifies the list in
place, returns None

e Lists are mutable —they can be changed
— including by functions


http://www.pythontutor.com/visualize.html#code=hamlet%20%3D%20%22to%20be%20or%20not%20to%20be%20that%20is%20the%20question%20whether%20tis%20nobler%20in%20the%20mind%20to%20suffer%22.split%28%29%0A%0Aprint%28%22hamlet%3A%22,%20hamlet%29%0A%0Aprint%28%22sorted%28hamlet%29%3A%22,%20sorted%28hamlet%29%29%0Aprint%28%22hamlet%3A%22,%20hamlet%29%0A%0Aprint%28%22hamlet.sort%28%29%3A%22,%20hamlet.sort%28%29%29%0Aprint%28%22hamlet%3A%22,%20hamlet%29&cumulative=false&curInstr=0&heapPrimitives=false&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

See in python tutor

Customizing the sort order

Goal: sort a list of names by last name

names = ["Isaac Newton", "Albert Einstein", "Niels
Bohr", '"Marie Curie", '"Charles Darwin'", '"Louils
Pasteur", "Galileo Galilei", '"Margaret Mead"]

print ("names:", names)
This does not work:

print ("sorted (names) :", sorted(names))

When sorting, how should we compare these names?

"Niels Bohr"
"Charles Darwin"


http://www.pythontutor.com/visualize.html#code=names%20%3D%20%5B%22Isaac%20Newton%22,%20%22Albert%20Einstein%22,%20%22Niels%20Bohr%22,%20%22Marie%20Curie%22,%20%22Charles%20Darwin%22,%20%22Louis%20Pasteur%22,%20%22Galileo%20Galilei%22,%20%22Margaret%20Mead%22%5D%0A%0Aprint%28%22names%3A%22,%20names%29%0Aprint%28%22sorted%28names%29%3A%22,%20sorted%28names%29%29&cumulative=false&curInstr=0&heapPrimitives=false&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

See in python tutor

Aside: What does this do?

def mystery (msg) :
return msg.split (" ") [1]

x = mystery ("happy birthday")
print (x)


https://tinyurl.com/btt8efx2

See in python tutor

Sort key

* Asort key is a function that can be called
on each list element to extract/create a
value that will be used to make
comparisons.

fruits = ["watermelon", "fig", "apple"]

print (sorted (fruits))
print (sorted(fruits, key=len))


http://www.pythontutor.com/visualize.html#code=fruits%20%3D%20%5B%22watermelon%22,%20%22fig%22,%20%22apple%22%5D%0Aprint%28sorted%28fruits%29%29%0Aprint%28sorted%28fruits,%20key%3Dlen%29%29%0A%0A&cumulative=false&curInstr=0&heapPrimitives=false&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

See in python tutor

Sort key

A sort key is a function that can be called on each list element
to extract/create a value that will be used to make
comparisons.

 We can use this to sort on a value (e.g. “last_name”) other
than the actual list element (e.g. “first_name last_name”).

 We could use the following function as a sort key to help us
sort by last names:

def last name (name) :
return name.split(" ") [1]

print('last name ("Isaac Newton"):', last name("Isaac Newton"))


https://tinyurl.com/4rw53fps

See in python tutor

Use a sort key as the key argument

Supply the key argument to the sorted function or the sort function

def last name (name) :
return name.split (" ") [1]

names = ["Isaac Newton", "Ada Lovelace", "Fig Newton", "Grace Hopper'"]

print (sorted(names, key=last name))
print (sorted (names, key=len)) \\~§§§=:::;;;r\“
If there is a tie in last

names, preserves
def last name len(name): original order of values.

return len(last name (name))

print (sorted(names, key=last name len))


https://tinyurl.com/v3fuzbww

See in python tutor

itemgetter is a function
that returns a function

Useful for creating a function that will return particular elements
from a sequence (e.g. list, string, tuple):

Returns a function Call function passing in

this list as an argument

import operato

operator.itemgetter (2) ( ) - 8
operator.itemgetter (0) ( ) > 7
operator.itemgetter (1) ( ) - 3
operator.itemgetter (0, 1) ( ) 2> (7, 3)
operator.itemgetter (3) ( ) >

IndexError: list index out of range

Read the Documentation:
https://docs.python.org/3/library/operator.html


https://tinyurl.com/yxemz2vy

Tuples

e Immutable

— cannot change elements
e Create using|()
e Use square brackets

— to query and slice

student score = ('Robert', 8)



See in python tutor

itemgetter Exercise

import operator

1stl = [2, 7, 3, 9, 4]

print (operator.itemgetter (1) (1stl))

print (operator.itemgetter (1, 2) (1stl))

print (operator.itemgetter (2, 3) (1stl))

tup2 = operator.itemgetter (3, 2, 1, 0) (1lstl)
print (tup2)

print (operator.itemgetter (0) (tup2))

get second = operator.itemgetter (1)

print (get second(tup2))

print (operator.itemgetter (2) ("howdy"))
print (operator.itemgetter (2, 0, 1) ("howdy")) "


https://tinyurl.com/w9s842d3

Two ways to Import 1temgetter

import operator / A tuple

student score = ('Robert', 8)
operator.itemgetter (0) (student score) = “Robert”
operator.itemgetter(l) (student score) — 8

Or

Another way to import,

allows you to call
itemgetterdirectly.

from operator import itemgetter<I

student score = ('Robert', 8)
itemgetter (0) (student score) = “Robert”
itemgetter (l) (student score) — 8

12



See in python tutor

Using itemgetter

Another way to import,

allows you to call
itemgetter directly.

from operator import itemgetter-::::;

student score = ('Robert', 8)
itemgetter (0) (student score) = “Robert”

sorted (student scores)
return?

itemgetter(l) (student score) = 8 !wmnmms

student_scores =

[ ('Robert', 8), ('Alice', 9), ('Tina', 7)]

Sort the list by name:
sorted(student scores, key=itemgetter (0))

Sort the list by score

sorted (student scores, key=itemgetter(l))

13


https://tinyurl.com/3mh9tf8m

See in python tutor

Sorting based on two criteria

Goal: sort based on score;
if there is a tie within score, sort by name

Two approaches:
Approach #1: Use an itemgetter with two arguments
Approach #2: Sort twice (most important sort last)

student scores = [('Robert', 8), ('Alice',6 9),
('Tina', 10), ('James',6 8)]
Approach #1:

sorted (student scores, key=itemgetter(1l,0))

Approach #2:

sorted by name = sorted(student scores, key=itemgetter (0))
sorted by score = sorted(sorted by name, key=temgetter(l))

14


https://tinyurl.com/y34cle6s

Sort on most important criteria LAST

e Sorted by score (ascending), when there is a tie
on score, sort using name

from operator import itemgetter
student scores = [('Robert', 8), ('Alice', 9), ('Tina', 10), ('James',6 8)]

sorted by name = sorted(student_scores, key=itemgetter (0))
>>> sorted by name

[('Alice', 9), ('James', 8), ('Robert', 8), ('Tina', 10)]

sorted by score = sorted(sorted by name, key=itemgetter(l))
>>> sorted by score
[('TJames', 8), ('Robert', 8), ('Alice', 9), ('Tina', 10)]

15
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More sorting based on two criteria

If you want to sort different criteria in different directions, you
must use multiple calls to sort or sorted

student scores = [('Robert', 8), ('Alice',6 9), \
('Tina', 10), ('James', 8)]

Goal: sort score from highest to lowest; if there is a tie within score,
sort by name alphabetically (= lowest to highest)

sorted by name = sorted(student scores, key=itemgetter (0))
sorted by hi score = sorted(sorted by name,
key=itemgetter(l), reverse=True)

Remember: Sort on mostimportant criteria LAST 1o


https://tinyurl.com/y65gs8m3

See in python tutor

Sorting Exercise

from operator import itemgetter

student scores = [('Ann', 7), ('Raul', 6), ('Ted',6 4),
('Lisa', 6)]

print (sorted(student scores, key=itemgetter(l)))

lst a = sorted(student scores, key=itemgetter (0))
print (lst a)

lst b = sorted(lst a, key=itemgetter(l))

print (1lst b)

lst ¢ = sorted(lst a, key=itemgetter(l), reverse=True)

print (lst c)

17


https://tinyurl.com/kc7tek45

Digression: Lexicographic Order

"Aaron'
"Andrew'
'Angie'’

'with'
'withhold'
'withholding'

'"Able'
'"Charlie'
'baker'
'delta'

1,9,9]
2, 1]
3]

18



Sorting: strings vs. numbers

e Sorting the powers of 5:

>>> sorted([125, 5, 3125, 625, 25])

[5, 25, 125, 625, 3125]

>>> sorted(["125", "5", "3125", "625", "25"])
['125', '25', '3125', '5', '625']

19
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Aside: Use a sort key to create a new lis

Create a different list that contains the value returned by the sort key, sort it,
then extract the relevantpart:

names = ["Isaac Newton", "Fig Newton", '"Niels Bohr"]

# keyed names will be a list of [lastname, fullname] lists

keyed names = [] 1) Create the new list.

for name in names:

keyed names.append([last name (name) , name]) | 2)sSort the new list.

If there is a tie in last
names, sort by next

sorted keyed names = sorted(keyed names) e Ll = T ol e

sorted names = []

for keyed name in sorted keyed names:
sorted names.append (keyed name[1l])—————

3) Extract the relevant part.

print("sorted names:", sorted names)

20


https://tinyurl.com/y2yq7h7s

