
Sharing, mutability, and
immutability

Ruth Anderson

UW CSE 160

Autumn 2022

1

Topics for Today

• variables and objects

• Changing/creating bindings vs.
changing/modifying objects

• Mutability vs. immutability

• Review of types

2

Copying and mutation

list1 = ["e1", "e2"]

list2 = list1

list3 = list(list1) # make a copy; also “list1[:]”
print(list1, list2, list3)

list1.append("e3")

list2.append("e4")

list3.append("e5")

print(list1, list2, list3)

list1 = list3

list1.append("e6")

print(list1, list2, list3)

3

See in python tutor

https://tinyurl.com/52aevy3s

An aside: List notation

• Possibly misleading notation:

• More accurate, but more verbose, notation:

“four” “score” “and” “seven” “years”

“four” “score” “and” “seven” “years”

“four” “score” “and” “seven” “years”

4

list

list

Variable (re)assignment vs. Object mutation

• (Re)assigning a variable changes a binding, it
does not change (mutate) any object

(Re)assigning is always done via the syntax:
my_var = expr size = 6

list2 = list1

• Mutating (changing) an object does not change
any variable binding

Two syntaxes: Examples:
left_expr = right_expr my_list[3] = val

expr.method(args…) my_list.append(val)

5

Changes something about
the object that my_list
refers to

Changes what the
variables
size and list2
are bound to

New and old values

• Every expression evaluates to a value
– It might be a new value
– It might be a value that already exists

• A constructor evaluates to a new value:
lst1 = [3, 1, 4, 1, 5, 9]

lst2 = [3, 1, 4] + [1, 5, 9]

lst3 = [[3, 1], [4, 1]]

• An access expression evaluates to an existing value:
x = lst1[1]

y = my_dict["rea"]

• What does a function call evaluate to?
z = mystery(arg)

6

In all 3 examples
here the right
hand side of = is a
constructor

Example: Variable reassignment
or Object mutation?

def change_val(lst):

lst[0] = 13

def append_val(lst):

lst.append(99)

def mystery(lst):

lst = lst + [99]

return lst

lst2 = [1, 2]

change_val(lst2)

append_val(lst2)

lst3 = mystery(lst2)

7

See in python tutor

https://tinyurl.com/yr7jbm6c

Example: Lists of lists
def make_new_grid(input_grid):

"""Make a new grid that is a copy of input_grid.

Set location [0][0] in new grid to be 99.

Do not modify input_grid."""

new_grid = []

for row in input_grid:

new_grid.append(row)

new_grid[0][0] = 99

return new_grid

grid1 = [[1, 2, 3], [4, 5, 6]]

grid2 = make_new_grid(grid1)

print("grid1:", grid1)

print("grid2:", grid2)

8

See in python tutor

https://tinyurl.com/2ebdzfwh

Aside: Object identity
• An object’s identity never changes
• Can think of it as its address in memory
• Its value of the object (the thing it represents) may change

my_list = [1, 2, 3]

other_list = my_list

my_list.append(4)

my_list is other_list ⇒ True
my_list and other_list refer to the exact same object

my_list == [1, 2, 3, 4] ⇒ True
The object my_list refers to is equal to the object [1,2,3,4]
(but they are two different objects)

my_list is [1, 2, 3, 4] ⇒ False
The object my_list refers to is not the exact same object
as the object [1,2,3,4]

9

See in python tutor

Use == to check for equality, NOT is

Aside: Using is with None is o.k: if x is None:

https://tinyurl.com/y654yoxg

Object type and variable type

• An object’s type never changes
• A variable can get rebound to a value of a

different type
Example: The variable a can be bound to an int or a list

a = 5 5 is always an int
a = [1, 2, 3, 4] [1, 2, 3, 4] is always a list

• A type indicates:
– what operations are allowed
– the set of representable values
– type(object) returns the type of an object

10

New datatype: tuple

• Like lists, tuples represents an ordered sequence
of values

• Like strings, tuples are immutable

• The elements of a tuple can be anything (including
mutable types)

Examples:

()

(4, 7, 9)

("hi", [1, 2], 5)

11

Tuple operations

Constructors
– Literals: Use parentheses
("four", "score", "and", "seven", "years")

(3, 1) + (4, 1) => (3, 1, 4, 1) # creates a new tuple!

Queries
– Can index just like lists:

tup = ("four", "score", "and", "seven", "years")

print(tup[0]) => "four"

print(tup[-1]) => "years"

Mutators
– Like strings, tuples are immutable, so have no mutators

12

Immutable datatype

• An immutable datatype is one that doesn’t
have any functions in the third category:
– Constructors

– Queries

– Mutators: Does not have any!

• Immutable datatypes:
– int, float, boolean, string, tuple, frozenset

• Mutable datatypes:
– list, dictionary, set

13

Remember:
Not every value may be placed in a set

• Set elements must be immutable values

– int, float, bool, string, tuple

–not: list, set, dictionary

• The set itself is mutable (e.g. we can add
and remove elements)

• Aside: frozenset must contain immutable values and is itself immutable
(cannot add and remove elements)

14

Remember: Not every value is
allowed to be a key in a dictionary

• Remember: Dictionaries hold key:value pairs

• Keys must be immutable

– int, float, bool, string, tuple of immutable types

– not: list, set, dictionary

• Values in a dictionary can be mutable

• The dictionary itself is mutable (e.g. we can
add and remove elements)

15

Mutable and Immutable Types

• Immutable datatypes:

– int, float, boolean, string, function, tuple, frozenset

• Mutable datatypes:

– list, dictionary, set

Note: a set is mutable, but a frozenset is immutable

16

Tuples are immutable
Lists are mutable

def update_record(record, position, value):

"""Change the value at the given position"""

record[position] = value

my_list = [1, 2, 3]

my_tuple = (1, 2, 3)

update_record(my_list, 1, 10)

print(my_list)

update_record(my_tuple, 1, 10)

print(my_tuple)

17

See in python tutor

https://tinyurl.com/426275dr

Increment Example
def increment_count(words_dict, word):

"""increment the count for word"""

if word in words_dict:

words_dict[word] = words_dict[word] + 1

else:

words_dict[word] = 1

def increment_val(value):

"""increment the value???"""

value = value + 1

my_words = dict()

increment_count(my_words, "school")

print(my_words)

my_val = 5

increment_val(my_val)

print(my_val) 18

See in python tutor

https://tinyurl.com/3ddu9r5t

