
Sets

Ruth Anderson

UW CSE 160

Autumn 2022

1

Dealing with Duplicates

We have voting results from states that are coming in
and added to a list:

results_list = ["WA", "OR", "CA", "WA", "WA", "OR", "WA"]

• Which states do we have some results from?

2

Finding Overlap & Combining

We have list of states where races have been called:

senate_called_list = ["WA", "OR", "NC", "GA"]

governor_called_list = ["PA", "OR", "NY"]

• Which states have had both their senate and governors races
called?

• Which states have had at least one of their races called?

3

Sets

• Mathematical set: a collection of values, without
duplicates or order

• Order does not matter
{ 1, 2, 3 } == { 3, 2, 1 }

• No duplicates
{ 3, 1, 4, 1, 5 } == { 5, 4, 3, 1 }

• For every data structure, ask:
– How to create

– How to query (look up) and perform other operations
• (Can result in a new set, or in some other datatype)

– How to modify

Answer: http://docs.python.org/3/library/stdtypes.html#set

3

2

1

1

4

3

5

4

http://docs.python.org/3/library/stdtypes.html#set

Two ways to create a set

1. Direct mathematical syntax:
odd = {1, 3, 5}

prime = {2, 3, 5}

Note: Cannot use “{}” to express empty set: it
means empty dictionary! Use set() instead.

2. Construct from a list: (also from a tuple or string)

odd = set([1, 3, 5])

prime = set([2, 3, 5])

empty = set([]) # or set()

5

Set operations
odd = {1, 3, 5}

prime = {2, 3, 5}

• membership  Python: in 4 in prime  False
• union  Python: | odd | prime  {1, 2, 3, 5}
• intersection  Python: & odd & prime  {3, 5}
• difference \ or - Python: - odd – prime  {1}

Think in terms of set operations,
not in terms of iteration and element operations

– Shorter, clearer, less error-prone, faster

Although we can do iteration over sets:
iterates over items in arbitrary order

for item in my_set:

…

But we cannot index into a set to access a specific element.
6

Practice with sets

z = {5, 6, 7, 8}

y = {1, 2, 3, 1, 5}

k = z & y

j = z | y

m = y – z

n = z – y

7

See in python tutor

http://www.pythontutor.com/visualize.html#code=z%20%3D%20%7B5,%206,%207,%208%7D%0Ay%20%3D%20%7B1,%202,%203,%201,%205%7D%0Ak%20%3D%20z%20%26%20y%0Aj%20%3D%20z%20%7C%20y%0Am%20%3D%20y%20-%20z%0An%20%3D%20z%20-%20y%0A&cumulative=false&heapPrimitives=false&mode=edit&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

Modifying a set

• Add one element to a set:
my_set.add(newelt)

my_set = my_set | {newelt}

• Remove one element from a set:
my_set.remove(elt) # elt must be in my_set or raises error
my_set.discard(elt) # never errors
my_set = my_set - {elt}

What would this do?
my_set = my_set – elt

• Remove and return an arbitrary element from a set:
my_set.pop()

8
Note: add, remove and discard all return None

Practice with sets

z = {5, 6, 7, 8}

y = {1, 2, 3, 1, 5}

p = z

q = set(z) # Makes a copy of set z

z.add(9)

q = q | {35}

z.discard(7)

q = q – {6, 1, 8}

9

See in python tutor

http://www.pythontutor.com/visualize.html#code=z%20%3D%20%7B5,%206,%207,%208%7D%0Ay%20%3D%20%7B1,%202,%203,%201,%205%7D%0Ap%20%3D%20z%0Aq%20%3D%20set%28z%29%20%20%23%20Makes%20a%20copy%20of%20set%20z%0Az.add%289%29%0Aq%20%3D%20q%20%7C%20%7B35%7D%0Az.discard%287%29%0Aq%20%3D%20q%20-%20%7B6,%201,%208%7D%0A%0A&cumulative=false&curInstr=0&heapPrimitives=false&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

Aside: List vs. set operations (1)

Find the common elements in both list1 and list2:

out1 = []

for elem in list2:

if elem in list1:

out1.append(elem)

Find the common elements in both set1 and set2:

set1 & set2

Much shorter, clearer, easier to write with sets!
10

Aside: List vs. set operations(2)
Find elements in either list1 or list2 (or both) (without duplicates):
out2 = list(list1) # make a copy

for elem in list2:

if elem not in list1: # don’t append elements already in out2

out2.append(elem)

Another way:
out2 = list1 + list2 # if an item is in BOTH lists, it will appear TWICE!

for elem in out1: # out1 = common elements in both lists

out2.remove(elem) # Remove common elements, leaving just a single copy

Find the elements in either set1 or set2 (or both):

set1 | set2

11

Aside: List vs. set operations(3)

Find the elements in either list but not in both:
out3 = []

out2 = list1 + list2 # if an item is in BOTH lists, it will appear TWICE!

for elem in out2:

if elem not in list1 or elem not in list2:

out3.append(elem)

--

Find the elements in either set but not in both:

set1 ^ set2

12

Not every value may be placed in a set

• Set elements must be immutable values

– int, float, bool, string, tuple

–not: list, set, dictionary

• The set itself is mutable (e.g. we can add
and remove elements)

• Aside: frozenset must contain immutable values and is itself immutable
(cannot add and remove elements)

13

