
File I/O

Ruth Anderson

UW CSE 160

Autumn 2022

1

File Input and Output

• As a programmer, when would one use a file?

• As a programmer, what does one do with a file?

2

Files store information
when a program is not running

Important operations:

• open a file

• close a file

• read data

• write data

3

Files and filenames

• A file object represents data on your disk drive

– It is an object in your Python program that you create

– Can read from it and write to it in your program

• A filename (usually a string) states where to find
the data on your disk drive

– Can be used to find/create a file

– Examples of filenames:
• Linux/Mac:"/home/rea/class/160/lectures/file_io.pptx"

• Windows:"C:\Users\rea\My Documents\cute_dog.jpg"

• Linux/Mac: "homework3/images/Husky.png"

• "Husky.png"

4

Two types of filenames

An Absolute filename gives a specific location on disk:
• "/home/rea/class/160/22au/lectures/file_io.pptx"

• "C:\Users\rea\My Documents\homework3\images\Husky.png"

– Starts with “/” (Unix) or “C:\” (Windows)
– Warning: code will fail to find the file if you move or rename files or

run your program on a different computer

A Relative filename gives a location relative to the current working
directory:
• "lectures/file_io.pptx"

• "images\Husky.png"

• "data\test-small.fastq"

– Warning: code will fail to find the file unless you run your program
from a directory that contains the given contents

• A relative filename is usually a better choice

5

Examples

Linux/Mac: These could all refer to the same file:

"/home/rea/class/160/homework3/images/Husky.png"

"homework3/images/Husky.png"

"images/Husky.png"

"Husky.png“

Windows: These could all refer to the same file:

"C:\Users\rea\My Documents\class\160\homework3\images\Husky.png"

"homework3\images\Husky.png"

"images\Husky.png"

"Husky.png"

6

Aside: “Current Working Directory” in Python

Current Working Directory - the directory from which you ran
Python

To determine it from a Python program:

import os

print("The current working directory is", os.getcwd())

Might print:

'/Users/johndoe/Documents'

7

os stands for
“operating system”

Opening a file in python

To open a file for reading:
Open takes a filename and returns a file object.

This fails if the file cannot be found & opened.

my_file = open("datafile.dat")

• Or equivalently:
my_file = open("datafile.dat", "r")

To open a file for writing:
Will create datafile.dat if it does not already
exist, if datafile.dat already exists, then it
will be OVERWRITTEN

my_file = open("datafile.dat", "w")

If datafile.dat already exists, then we will
append what we write to the end of that file

my_file = open("datafile.dat", "a")

8

By default, file is
opened for reading

Reading a file in python

Open takes a filename and returns a file object.

This fails if the file cannot be found & opened.

my_file = open("datafile.dat")

Approach 1: Process one line at a time

for line_of_text in my_file:

… process line_of_text

Approach 2: Process entire file at once

all_data_as_a_big_string = my_file.read()

my_file.close() # close the file when done reading

Assumption: file is a sequence of lines
Where does Python expect to find this file (note the relative pathname)?

9

Simple Reading a file Example

Reads in file one line at a time and

prints the contents of the file.

in_file = "student_info.txt"

my_file = open(in_file)

for line_of_text in my_file:

print(line_of_text)

my_file.close()

10

Reading a file Example

Count the number of words in a text file

in_file = "thesis.txt"

my_file = open(in_file)

num_words = 0

for line_of_text in my_file:

word_list = line_of_text.split()

num_words += len(word_list)

my_file.close()

print("Total words in file: ", num_words)

11

Equivalent to:
num_words = num_words + len(word_list)

Reading a file multiple times
You can iterate over a list as many times as
you like:

mylist = [3, 1, 4, 1, 5, 9]

for elt in mylist:

… process elt

for elt in mylist:

… process elt

Iterating over a file uses it up:

my_file = open("datafile.dat")

for line_of_text in my_file:

… process line_of_text

for line_of_text in my_file:

… process line_of_text

How to read a file multiple times?

Solution 1: Read into a list, then iterate over
it
my_file = open("datafile.dat")

my_lines = []

for line_of_text in my_file:

my_lines.append(line_of_text)

for line_of_text in my_lines:

… process line_of_text

for line_of_text in my_lines:

… process line_of_text

Solution 2: Re-create the file object
(slower, but a better choice if the file does not
fit in memory)
my_file = open("datafile.dat")

for line_of_text in my_file:

… process line_of_text

my_file = open("datafile.dat")

for line_of_text in my_file:

… process line_of_text

12

This loop body will
never be executed!

In general, try to avoid reading a file more than on time. Reading files is slow.

Writing to a file in python

Replaces any existing file of this name

my_file = open("output.dat", "w")

Similar to printing output

my_file.write("a bunch of data")

except you must add newline if desired

my_file.write("a line of text\n")

and the argument must be a string

my_file.write(4)

my_file.write(str(4))

my_file.close()

open for Writing
(no argument, or
"r", for Reading)

“\n” means
end of line
(Newline)

Incorrect; results in:
TypeError: expected a character

buffer object

Correct. Argument
must be a string

13

close when done
with all writing

Next thing written will
be on this same line.

Count the number of words in a text file and

make a list of all the words in the file

num_words = 0

file_word_list = []

silly_file = open("silly.txt", "r")

for line in silly_file:

print(line, end="")

what should come next? (Hint: use split())

silly_file.close()

print("Total words in file: ", num_words)

14

15

num_words = 0

word_list = []

silly_file = open("silly.txt", "r")

for line in silly_file:

new_words = line.split()

word_list.extend(new_words)

num_words = num_words + len(new_words)

silly_file.close()

print("Total word count:", num_words)

print(word_list)

This is a silly file.

Here is some more silly text.

And even another silly line.

The fourth silly line.

16

