
CSE160_HW2

January 15, 2019

1 Homework 2: DNA analysis

Due: at 11pm on Wednesday, Jan 23, 2019. Submit via Canvas.

1.1 Learning Objectives:

• Gain experience writing Python code using loops, conditionals (if statements), functions and
string manipulation

• Become familiar with running Python programs from the command line and using com-
mand line parameters to locate data files

• Write Python code to analyze DNA data sets

NOTE: Although you will fill in the body of one function and call it, you do not need to write
additional functions for this assignment. You are encouraged to examine the provided function
filename_to_string, which opens and reads in data files, but you do not need to understand any-
thing about opening and reading files in order to do this assignment. We have already covered
everything you need to know to be able to complete this entire assignment. For all of our assign-
ments (except your final project) you should NOT use parts of Python not yet discussed in class
or the course readings.

Advice from previous students about this assignment: 14wi 15sp
This assignment is posted on Canvas

1.2 Background

You will use, modify, and extend a program to compute the GC content of DNA data. The GC
content of DNA is the percentage of nucleotides that are either G or C.

DNA can be thought of as a sequence of nucleotides. Each nucleotide is adenine, cytosine, gua-
nine, or thymine. These are abbreviated as A, C, G, and T. A nucleotide is also called a nucleotide
base, nitrogenous base, nucleobase, or just a base.

Biologists have multiple reasons to be interested in GC content:
GC content can identify genes within the DNA, and can identify types of genes. Genes tend

to have higher GC content than other parts of the DNA. Genes with longer coding regions have
even higher GC content. Regions of DNA with higher GC content require higher temperatures for
certain chemical reactions, such as when copying/duplicating the DNA.

GC content can be used in determining classification of species.
If you are curious, Wikipedia has more information about GC content. That reading is optional

and is not required to complete this assignment.

1

https://canvas.uw.edu/courses/1254701/assignments/4615077
https://canvas.uw.edu/courses/1254701/assignments/4615077

Your program will read data files produced by a high-throughput sequencer — a machine that
takes as input some DNA, and produces as output a file containing a sequence of nucleotides.

Here are the first 8 lines of output from a particular sequencer:

@SOLEXA-1GA-2_2_FC30DNN:1:2:574:1722
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
+SOLEXA-1GA-2_2_FC30DNN:1:2:574:1722
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
@SOLEXA-1GA-2_2_FC30DNN:1:2:478:1745
GTGGGGGTGATGTCCACGATTACGCCGACCGGCTGG
+SOLEXA-1GA-2_2_FC30DNN:1:2:478:1745
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

The nucleotide data is in the second line, the sixth line, the tenth line, etc. Your program will
not use the rest of the file, which provides information about the sequencer and the sequencing
process that created the nucleotide data.

1.3 Problem 1: Obtain the files, add your name

Obtain the files you need by downloading the homework2.zip file. (This is a large download —
be patient.)

Unzip the homework2.zip file to create a homework2 directory/folder. You will do your work
here. The homework2 directory/folder contains:

• dna_analysis.py, a partial Python program that you will complete
• answers.txt, a file where you will answer textual questions
• data, a directory. Which contains the data that you will process:
• *.fastq files, which are output from DNA sequencers; this is the data that the program ana-

lyzes
• expected_output, a directory containing example runs of the final result of your

dna_analysis.py program.

You will do your work by modifying two files — dna_analysis.py and answers.txt — and then
submitting the modified versions. Add your name to the top of each of these files.

Each problem will ask you to make some changes to the program dna_analysis.py (or to write
text in the answers.txt file, or both). When you do so, you will generally add to the program. Do
not remove changes from earlier problems when you work on later problems; your final program
should solve all the problems.

In either file, keep the number of characters on a particular line below 80, otherwise your files
become hard to read. One technique to do this in Python is to break large equations into smaller
ones by storing subexpressions in variables. Breaking things down into smaller computations can
also help with debugging.

In []: # Code cell for working on Problem 1

By the end of the assignment, we would like dna_analysis.py to produce output of the exact
form:

2

GC-content: ___
AT-content: ___
G count: ___
C count: ___
A count: ___
T count: ___
Sum of G+C+A+T counts: ___
Total count: ___
Length of nucleotides: ___
AT/GC Ratio: ___
GC Classification: ___

Where ___ is replaced by values that you will calculate. Of course, the exact values in each
category will vary depending on the input data that you are using. We expect the formatting of
your program output to exactly match this.

1.4 Tips

Check your output - You should validate your dna_analysis.py program’s output using the Diff
Checker before submitting your assignment. You can compare your output to the files given in the
expected_output directory of the homework2 files. Drag a file to a window in the Diff Checker.
Select text in a command prompt window and paste it into the other window and select "Find
Difference!".

Editing text files - You will submit answers.txt as a text file. Plain text is the standard for com-
municating information among programmers, because it can be read on any computer without
installing proprietary software. You can edit text files using any text editor. If you use a word
processor, then be sure to save the files as text. Windows users should never use Notepad, as
Notepad will mangle the line endings in the file; WordPad or Notepad++ are better alternatives.

Command Prompt - In the past some students have had trouble running from the command
line when folder names had spaces in them. You may find it easiest to avoid this (that is, rename
your folders so they do not have spaces in the name).

To cut and paste things from the Windows command prompt, left click and drag the mouse
to select text from anywhere in the command prompt window. When you have highlighted what
you want, hit return. Now you can use control-V to paste into Diff Checker or a text file.

You do not need to modify answers.txt or dna_analysis.py for this problem.

1.5 Problem 2: Run the program

When writing programs that analyze data (or any other type of program) it is important to check
the correctness of your programs. One way to do this is by comparing the output of your program
to a computation done in some other way, such as by hand or by a different program. We have
provided the test-small.fastq file for this purpose. This file is small enough that you can easily open
it up in a text editor and calculate the GC content by hand. Then, run your program to verify that
it provides the correct answer for this file.

You should be able to open up test-small.fastq and other input and output files in a text editor of
your choice (although just clicking on a .fastq file is not likely to work since the .fastq file extension
is not one that is known to your operating system).

3

https://www.diffchecker.com/diff

(If you are interested, sample_3.fastq and sample_4.fastq are from Streptococcus pneumoniae
TIGR4, and sample_5.fastq is from Human herpesvirus 5.)

If you have already used the Diff Checker, you might notice that some of your results are
different than the example results. Don’t worry about this — this issue will be resolved in Problem
6.

Cut and paste the line of output produced by your program regarding GC-content when run
on sample_1.fastq into your answers.txt file. See "Tips" at the top of this page for info on cutting
and pasting things from the Windows command prompt. (Note, this could take a minute or so to
run.) For example, your answer might look like:

GC-content: 0.42900139393 (Note: This is not the answer you should expect to get; this is just
an example of the format that your answer should be in.)

In []: # Code cell for working on Problem 2

1.6 Problem 3: Remove some lines

In your program, comment out this line:

gc_count = 0

by prefixing it by the # character. Save the file and then re-run the program from the comand
line, just as you did for Problem 2.

In answers.txt, explain what happened, and why it happened.
Now, restore the line to its original state by removing the # that you added. What would

happen if you commented out this line instead? (Feel free to try it!)

nucleotides = filename_to_string(filename)

Explain what happens and why in answers.txt.

In []: # Code cell for working on Problem 3

1.7 Problem 4: Compute AT content

Augment your program so that, in addition to computing and printing the GC ratio, it also com-
putes and prints the AT content. The AT content is the percentage of nucleotides that are A or
T.

Two ways to compute the AT content are:

• Copy the existing loop that examines each nucleotide and modify it. You will now have two
loops, one of which computes the GC count and one of which computes the AT count. OR

• Add more statements into the existing loop, so that one loop computes both the GC count
and the AT count.

You may use whichever approach you prefer. Add whatever new variables you need.
Check your work by manually computing the AT content for file test-small.fastq, then com-

paring it to the output of running your program on test-small.fastq.
Run your program on sample_1.fastq. Cut-and-paste the relevant line of output into an-

swers.txt.

In []: # Code cell for working on Problem 4

4

https://en.wikipedia.org/wiki/Streptococcus_pneumoniae
https://en.wikipedia.org/wiki/Streptococcus_pneumoniae
https://en.wikipedia.org/wiki/Cytomegalovirus
https://www.diffchecker.com/diff

1.8 Problem 5: Count nucleotides

Augment your program so that it also computes and prints: - the number of A nucleotides - the
number of T nucleotides - the number of G nucleotides - the number of C nucleotides.

Add whatever new variables you need.
When doing this, add at most one extra loop to your program. You can solve this part without

adding any new loops at all, by reusing an existing loop. At this point you should also feel free to
modify the code we have given you if another structure of if statements makes more sense to you.
We just caution you against looping through the data more times than you need to as this could
cause your code to run very slowly.

Check your work by manually computing the results for file test-small.fastq, then comparing
them to the output of running your program on test-small.fastq.

Run your program on sample_1.fastq. Cut-and-paste the relevant lines of output into an-
swers.txt (the lines that indicate the G count, C count, A count, and T count).

In []: # Code cell for working on Problem 5

1.9 Problem 6: Sanity-check the data

For each of the eleven .fastq files you have been given, calculate and print the following three
quantities:

• the sum of: the A count, the C count, the G count, and the T count (store this in a new
variable called sum_counts)

• the total_count variable (total number of nucleotides)
• the length of the nucleotides string variable. You can compute this with len(nucleotides).

In other words, compute the three quantities for test-small.fastq and then do the same for test-
high-gc-1.fastq, etc.

For at least one .fastq file, at least one of these quantities will be different from the other two.
In your answers.txt file, state which .fastq file(s) and which quantities differ. (If all three quantities
are equal for each .fastq file, then your code contains a mistake.) In your answers.txt file, write a
short paragraph that explains why these differ.

Explaining why (or debugging your code if all three quantities were the same in all .fastq files)
might require you to do some detective work.

This exercise is meant to expose you to a situation you might encounter when processing a
data file of your own (say on your Final project). When your program does not give the results
you expect, there are two likely sources of the problem. One is that your program contains a bug!
Check your code carefully to be sure you are calculating all values correctly. We will talk about
testing in more detail later but for now, try walking through your code with a very small data set
and calculating values by hand. A second source of unexpected results that is very common with
data files is that there is something you were assuming about the contents of the data files that
was an incorrect assumption. This could include things like assuming each line would contain
a certain number of characters or words, or that all characters would be uppercase or lowercase,
or that values might only be in a certain range. If you wrote your program assuming something
about your data files that was not correct, your program may not give correct results.

To track down a wrong assumption about a data file, think about ways you can modify your
program to help you determine what is happening. This could include having it print out values
when they do not meet some asumption you are making about the file. You could also try just

5

loading a data file into a text editor and examining it with your eyes to see if you see something
you did not expect. (Although if you try this approach we strongly suggest that you start with the
smallest data file for which the three quantities are not all the same.) Another approach would
be to modify your program, or create a new program, to compute the three quantities for each
line of a data file separately (as opposed to for the file as a whole as you have been doing): if the
quantities differ for an entire file, then they must differ for at least one specific line in that file.
Examining that/those line(s) will help you understand the problem.

If all of the three quantities that you measured in problem 6 are the same, then it would not
matter which one you used in the denominator when computing the GC content. However, you
saw that the three quantities are not all the same. In answers.txt, state which of these quantities
should be used in the denominator and which should not, and why.

If your program incorrectly computed the GC content (which should be equal to
(G+C)/(A+C+G+T)), then state that fact in your answers.txt file. Then, go back and correct your
program, and also update any incorrect answers elsewhere in your answers.txt file. It is fine to
change the code we provided you if needed.

If you are unsure if you are calculating things correctly, now would be a good time to validate
your dna_analysis.py program’s output using the Diff Checker. You can compare your output
to the files given in the expected_output directory of the homework2 files. You have not yet
completed the assignment, so your output will not be identical. But things like GC-content, AT-
content and individual counts should be identical. You will produce the last two lines of output
in the expected_output files in Problem 7 and Problem 8 below.

In []: # Code cell for working on Problem 6

1.10 Problem 7: Compute the AT/GC ratio

Sometimes biologists use the AT/GC ratio, defined as (A+T)/(G+C), rather than the GC-content,
which is defined as (G+C)/(A+C+G+T).

Modify your program so that it also computes the AT/GC ratio.
Check your work by manually computing the results for file test-small.fastq. Compare them to

the output of running your program on test-small.fastq.
Run your program on sample_1.fastq. Cut-and-paste the relevant lines of output into an-

swers.txt (the line that indicates the AT/GC ratio).

In []: # Code cell for working on Problem 7

1.11 Problem 8: Categorize organisms

The GC content can be used to categorize microorganisms. Fill in the body of the classify function
to return the classification of the organism ("high", "moderate" or "low") described in the data file
given using these classifications:

If the GC content is above 60%, the organism is considered “high GC content”. If the GC
content is below 40%, the organism is considered “low GC content”. Otherwise, the organism is
considered “moderate GC content”.

Biologists can use GC content for classifying species, for determining the melting temperature
of the DNA (useful for both ecology and experimentation, for example PCR is more difficult on
organisms with high GC content), and for other purposes. Here are some examples:

6

https://www.diffchecker.com/diff

The GC content of Streptomyces coelicolor A3(2) is 72%. The GC content of Yeast (Saccha-
romyces cerevisiae) is 38%. The GC content of Thale Cress (Arabidopsis thaliana) is 36%. The GC
content of Plasmodium falciparum is 20%.

Again, test that your program works on some data files with known outputs. The test-
small.fastq file has low GC content. We have provided four other test files, whose names ex-
plain their GC content: test-moderate-gc-1.fastq, test-moderate-gc-2.fastq, test-high-gc-1.fastq, test-high-
gc-2.fastq.

You will find a "skeleton" or "stub" for the classify function near the top of dna_analysis.py, just
before where the main program begins. There is an assignment statement inside of the function
body that is there only as a placeholder. You should edit/remove it once you have added your
code. The function classify takes the gc_content as an input parameter and returns an appropriate
string indicating the GC Classification. Once you have filled in the body of the classify function
you should call the function from your main program in the appropriate place and use the string it
returns to print out a message that matches what is expected. For example, be sure that your out-
put for test-moderate-gc-1.fastq matches test-moderate-gc-1-expected.txt exactly using Diff Checker.

After your program works for all the test files, run it on sample_1.fastq. Cut-and-paste just the
relevant line of output from your program into answers.txt.

In []: # Code cell for working on Problem 8

1.12 Submit your work

You are almost done!
We recommend doing a quick search on this web page for answers.txt to confirm that each

place we asked you to answer a question, you have answered it.
At the bottom of your answers.txt file, in the “Collaboration” part, state which students or other

people (besides the course staff) helped you with the assignment, or that no one did.
Submit the following files via this turnin page.

dna_analysis.py
answers.txt

Please be sure to validate your dna_analysis.py program’s output using the Diff Checker
before submitting your assignment. You can compare your output to the files given in the ex-
pected_output directory of the homework2 files. Be sure that both the values are correct AND
that the messages you are printing are formatted correctly and have no typos.

Answer a REQUIRED survey (See Canvas site) asking how much time you spent and other
reflections on this assignment.

Now you are done!

In []: # Code cell for checking dna_analysis.py file code

7

https://www.diffchecker.com/diff

	Homework 2: DNA analysis
	Learning Objectives:
	Background
	Problem 1: Obtain the files, add your name
	Tips
	Problem 2: Run the program
	Problem 3: Remove some lines
	Problem 4: Compute AT content
	Problem 5: Count nucleotides
	Problem 6: Sanity-check the data
	Problem 7: Compute the AT/GC ratio
	Problem 8: Categorize organisms
	Submit your work

