\qquad

1. Evaluate the following Python expressions:
```
(5 / 2) + 2* 2
["live", "long", "and", "prosper"][1][1:]
len({1:"one", 2:"two", 3:"three"}[2])
float(str(2 + 2) + "5") + 1
itemgetter(1)(["to", "boldly", "go"])
```

2. Write a function that sorts a list of numbers by their absolute value, and returns a new sorted list as the result.
For example: sort_abs $([2,-1,4,-5,-2,1])$ returns $[-1,1,2,-2,4,-5]$.
3. Write a function that takes a list as a parameter, and returns a set containing the elements that appear more than once in the list.
For example: duplicates([1, 3, 2, 4, 3, 1, 1]) returns set([1, 3]).
4. Write a function that takes a string as an argument, and returns a dictionary that maps each character to its frequency in the given string.
For example: freq("Star Wars") returns \{"S":1, "t":1, "a":2, "r":2, " ":1, "W":1, "s":1\}.
5. Write a function that reverses a list, without using the built-in reverse function. Your function should return the reversed list, and not modify the list passed as a parameter.
For example: reverse_list([1, 2, 3]) returns [3, 2, 1].
6. Consider the following Python program:
```
def pos_dif(y, x):
    """
    Returns the positive difference of two numbers.
    """
    # Location B
    return abs(x - y)
def percent_error(actual, expected):
    """
    Returns the percent error of an experimental result.
    """
    # Location A
    x = pos_dif(actual, expected)
    y = expected
    # Location C
    return x / y
a = 15.0
b = 10.0
print percent_error(a, b)
```

For each of the locations indicated above, draw the environment frame(s) at that moment during execution.

