What are the valid indices of `lst`?

-3, -2, -1, 0, 1, and 2
-2, -1, 0, 1, and 2
0, 1, and 2
1, 2, and 3

Correct Answer:
-3, -2, -1, 0, 1, and 2

What happens if I call `lst[-1]`?

- Evaluates to 'santa maria'
- Evaluates to 'pinta'
- Error
- Evaluates to 'nina'

Correct Answer:
Evaluates to 'santa maria'

What happens if I call `lst[-len(lst)]`?

- Evaluates to 'santa maria'
- Error
- Evaluates to 'nina'
- Evaluates to 'pinta'
Correct

Answer:
Evaluates to 'nina'

What does the following code print?

```python
for i in range(len(lst)):
    print i, lst[i]
```

It is sometimes useful to iterate over the indices in a list rather than the list itself, because at any iteration of the loop, you have not only a value in the list, but also the index of a value in the list.

```
0 nina
1 pinta
2 santa maria
```

Correct

Answer:

Feedback:
0 nina
1 pinta
2 santa maria

What is the output of the following Python program?

```python
list1 = [1, 2, 3]
list2 = list1
list2.append(4)

print list1
print list2
```

```
[1, 2, 3, 4]
[1, 2, 3, 4]
```

Correct
Consider the following change to the code from question above:

```python
list1 = [1, 2, 3]
list2 = list1[:]
list2.append(4)
print list1
print list2
```

What is output of this program?

```
[1, 2, 3]
[1, 2, 3, 4]
```

Correct

Answer:

Feedback: Correct output:

```
[1, 2, 3]
[1, 2, 3, 4]
```

The change assigns list2 to a copy of list1. As a result, mutations to list2 do not affect the value of list1.

Which of the following expressions will return the **width of (number of columns in)** the grid? (check all that apply)

- [] `len(grid)`
- [] `len(grid[0][0])`
Which of the following expressions will return the height of (number of rows in) the grid? (check all that apply)

- len(grid)
- len(grid[0])
- len(grid[0][0])
- len(grid[1])

Correct
Answer:
len(grid)

After applying the blurring algorithm to this grid, what value would be stored in the first location in the first row of the new blurred grid (the location where the 1 is in the original grid)?

- 6
- 1
- 2
- 3

Correct
Answer:
1

Feedback:
Remember that we use truncating integer division and that locations outside of the grid are considered to be equal to zero when averaging.
Questions or Comments?
Contact Ruth Anderson at rea@cs.washington.edu