Introduction to Data Programming

CSE 160 University of Washington Winter 2017 Ruth Anderson

Slides based on previous versions by Michael Ernst and earlier versions by Bill Howe

Agenda for Today

- What is this course?
- Course logistics
- Python!

Welcome to CSE 160!

CSE 160 teaches core programming concepts with an emphasis on real data manipulation tasks from science, engineering, and business

Goal by the end of the quarter: Given a data source and a problem description, you can independently write a complete, useful program to solve the problem

Course staff

- Lecturer:
 - Ruth Anderson
- TAs:
 - Emily Furst
 - Cynthia(Lingyue) Zhang
 - Emilia Gan
 - Lauren Wolfe
 - Eric Green

Ask us for help!

Learning Objectives

- Computational problem-solving
 - Writing a program will become your "go-to" solution for data analysis tasks
- Basic Python proficiency
 - Including experience with relevant libraries for data manipulation, scientific computing, and visualization.
- Experience working with real datasets
 - astronomy, biology, linguistics, oceanography, open government, social networks, and more.
 - You will see that these are easy to process with a program, and that doing so yields insight.

What this course is <u>not</u>

- A "skills course" in Python
 - ...though you will become proficient in the basics of the Python programming language
 - …and you will gain experience with some important Python libraries
- A data analysis / "data science" / data visualization course
 There will be very little statistics knowledge assumed or taught
- A "project" course
 - the assignments are "real," but are intended to teach specific programming concepts
- A "big data" course
 - Datasets will all fit comfortably in memory
 - No parallel programming

"The greatest minds of my generation are trying to figure out how to make people click on ads" -- Jeff Hammerbacher, co-founder, Cloudera

S P

All of science is reducing to computational data manipulation

Old model: "Query the world" (Data acquisition coupled to a specific hypothesis) New model: "Download the world" (Data acquisition supports many hypotheses)

- Astronomy: High-resolution, high-frequency sky surveys (SDSS, LSST, PanSTARRS)
- Biology: lab automation, high-throughput sequencing,
- Oceanography: high-resolution models, cheap sensors, satellites

Slide from Bill Howe, eScience Institute

Example: Assessing treatment efficacy

	Α	В	С	D	E	F	G	Н		J
1	fu_2wk	fu_4wk	fu_8wk	fu_12wk	fu_16wk	fu_20wk	fu_24wk	total4type_fu	clinic_zip	pt_zip
2	1	3	4	7	9	9	9	12	98405	98405
3	2	4	6	7	8	8	8	8	98405	98403
4	0	G				0	0 Zin	code of clinic	98405	98445
5	3	2 nui	mber of	follow up	S	5	5		98405	98332
6	0	(within 16 weeks after 0 0 0							00405	<mark>98</mark> 405
7	2	treatment enrollment. 2 2 Zip code							of patient	3402
8	1	2	5	6	8	10	10	14	98405	98418
9	1	1	2	2	2	2	2	2	98499	98406
10	0	0	1	2	2	2	2	6	98405	98404
11	0	0	0	0	0	0	0	0	98405	98402
12	1	1	2	2	4	4	4	4	98405	98405
13	1	Question: Does the distance between the							98404	98404
14	2								98499	98498
15	0	patient's home and clinic influence the number							98499	98445
16	1	of follow ups, and therefore treatment efficacy?							98499	98405
17	1								98499	98498
18	1	3	3	3	3	3	3	3	98499	98499
19	1	1	4	5	7	7	7	7	98499	98371

Python program to assess treatment efficacy

This program reads an Excel spreadsheet whose penultimate# and antepenultimate columns are zip codes.

It adds a new last column for the distance between those zip# codes, and outputs in CSV (comma-separated values) format.# Call the program with two numeric values: the first and last# row to include.

The output contains the column headers and those rows.

Libraries to use

import random

import sys

import xlrd # library for working with Excel spreadsheets import time

from gdapi import GoogleDirections

No key needed if few queries

gd = GoogleDirections('dummy-Google-key')

wb = xlrd.open_workbook('mhip_zip_eScience_121611a.xls')
sheet = wb.sheet_by_index(0)

User input: first row to process, first row not to process
first_row = max(int(sys.argv[1]), 2)
row_limit = min(int(sys.argv[2]+1), sheet.nrows)

```
def comma_separated(lst):
    return ",".join([str(s) for s in lst])
```

headers = sheet.row_values(0) + ["distance"]
print comma_separated(headers)

```
for rownum in range(first row,row limit):
  row = sheet.row values(rownum)
  (zip1, zip2) = row[-3:-1]
  if zip1 and zip2:
    # Clean the data
    zip1 = str(int(zip1))
    zip2 = str(int(zip2))
    row[-3:-1] = [zip1, zip2]
    # Compute the distance via Google Maps
    try:
       distance = gd.guery(zip1,zip2).distance
    except:
       print >> sys.stderr, "Error computing distance:", zip1, zip2
       distance = ""
   # Print the row with the distance
   print comma separated(row + [distance])
   # Avoid too many Google queries in rapid succession
   time.sleep(random.random()+0.5)
```

23 lines of executable code!

Course logistics

- Website: http://www.cs.washington.edu/cse160
- See the website for all administrative details
- Read the handouts and required texts, before the lecture
 - There is a brief reading quiz due *before* each lecture
- Take notes!
- Homework 1 part 1 is due Friday
 - As is a survey (and a reading quiz before lecture)
- You get 5 late days throughout the quarter
 - No assignment may be submitted more than 3 days late. (contact the instructor if you are hospitalized)
- If you want to join the class, sign sheet at front of class, email <u>rea@cs.washington.edu</u>, from your @u address

Academic Integrity

- Honest work is required of a scientist or engineer
- Collaboration policy on the course web. Read it!
 - Discussion is permitted
 - Carrying materials from discussion is not permitted
 - Everything you turn in must be your own work
 - Cite your sources, explain any unconventional action
 - You may not view others' work
 - If you have a question about the policy, just ask us
- I trust you completely
- I have no sympathy for trust violations nor should you

How to succeed

- No prerequisites
- <u>Non</u>-predictors for success:
 - Past programming experience
 - Enthusiasm for games or computers
- Programming and data analysis are challenging
- Every one of you can succeed
 - There is no such thing as a "born programmer"
 - Work hard
 - Follow directions
 - Be methodical
 - Think before you act
 - Try on your own, then ask for help
 - Start early

Me (Ruth Anderson)

- Grad Student at UW: in Programming Languages, Compilers, Parallel Computing
- Taught Computer Science at the University of Virginia for 5 years
- PhD at UW: in Educational Technology, Pen Computing
- Current Research: Computing and the Developing World, Computer Science Education

Introductions

- Name
- Email address
- Major
- Year (1,2,3,4,5)
- Hometown
- Interesting Fact or what I did over break.

