Monte Carlo Simulation: Calculating 1t

Background

In section today we will try to use random numbers to calculate 1. To understand how a precise
mathematical constant can be estimated using randomness we first need to refresh some basic
geometry.

In the figure on the right the circle and the square have the
following areas:

Area Circle: A; = Ttr?
Area Square: Ag = (2r)* = 4r?

H . A 2
The ratio of the two areas is: 7 = %
S
e

And solving for T we get: = —
S

If we have an estimate for the ratio of the area of the circle to the

to the square we can solve for pi. The challenge becomes

estimating this ratio.

Monte Carlo Simulations

This is where we can take advantage how quickly a computer can generate pseudorandom numbers. There
is a whole class of algorithms called Monte Carlo simulations that exploit randomness to estimate real world
scenarios that would otherwise be difficult to explicitly calculate. We can use a Monte Carlo simulation to
estimate the area ratio of the circle to the square.

Imagine you randomly drop grains of sand into the area of the square. By counting the total number of sand
grains in the square (all of them since you're an accurate dropper) to the number of sand grains inside the
circle we get this estimate. Multiple the estimated ratio by four and you get an estimate for m. The more
sand grains you use the more accurate your estimate of Tt.

Today’s Problem

Write a program that estimates Tt for [10°,10%,102,10%,10%,10°,10°,107,108 random points. Your output
should look something like this:

1x10MN0: 4.0
1x10/M1: 2.4
1x10/72: 2.68
1x10/A3: 3.004
1x10/7M4: 3.1296
1X10A5: 3.14212
1x1076: 3.14442
1X10A7: 3.1415972
1x10A8: 3.14182688

Step 1: Plan It Out
What are some major design considerations you need to think about? How the problem be broken into a

series of smaller problems?
What are some useful functions to create? For each function write a doc string.
Hint: From the random modual: random.random() returns a float between 0 and 1.

Step 2: Implement the smaller problems.

Step 3: Write the main function.

Bonus Question: How would you implement this as a monolithic function instead of multiple functions?
What are the pros and cons of each approach?

Monte Carlo Simulation: Calculating 1t
(Solutions)

Step 1: Plan It Out
Design Considerations:
e How general to make each function? Can the radius of the circle be changed?
e Where to center the square in the coordinate plane?
Some useful functions might include:
random_around_zero(r): return a random float between [-r,r]
random_throw(r): return the tuple (x,y) of a random point inside a square [(-r,r),(r,r),(r,-r),(-r,-1)]
in_circle(r,x,y): return True if the point (x,y) is in a circle of radius r centered at (0,0). Return False
otherwise.
e number_in_circle(n_total,r=0.5): test n_total number points and return the number that are in a circle
of radius r (default r=0.5)

Step 2: Implement the smaller problems.
def random_around_zero(r):
Return a random float in the range [-r,r]
width = 2*r
return random.random()*width - r

def random_throw(r):
#Retrun a random point in the square [(-r,r),(r,r),(r,-r),(-r,-1)
x = random_around_zero(r)
y = random_around_zero(r)
return x,y

def in_circle(r,x,y):
#Return True if (x,y) is in a circle with radius r centered at 0. Otherwise False.
d = (X*x + y*y)**0.5
return d<=r

def number_in_circle(n_total,r=0.5):

"Test n_total random points (x,y) in a square with sides 2r and return the number
of points that are inside a circle of radius r."
n_circle=0
for i in xrange(n_total):

X,y = random_throw(r)

if in_circle(r,x,y):

n_circle +=1

return n_circle

Step 3: Write the main function.
def main():
for i in range(9):
n_total = 10**i
n_circle += number_in_circle(n_total)
pi = 4.0 * n_circle/n_total
print '1x10™ + str(i)+ "', pi
if _name_ ==' main__ "
main()

A monolithic approach:

Instead of breaking the problem down into smaller functions you could have written a single function that
calculates the number of throws in the circle without any helper functions. What are some pros and cons of
designing it this way vs the functional decomposition method?

def number_in_circle_monolithic(n_total,r=0.5):
n_circle=0
for i in xrange(n_total):
X = 2*r'random.random() - r
y = 2*r*random.random() - r
d =(x*x + y*y)**0.5
if d<=r:
n_circle +=1
return n_circle

