More On Classes

UW CSE 160
Spring 2015

Classes define objects

*What are objects we've seen?

Classes define objects

What are objects we've seen?

String File

_nt CSV Writer
_I,Oat Others?
Dict

ist

Set

Graph

Objects can be created

set_one = set()

dict one =dict() # dict one = {}
str one =str() #str one="
list one =list() # list one =]
file_one = open('data.csv')
Import networkx as nx
graph_one = nx.Graph()

Objects have methods
set_one.append('purple’)
dict_one.setdefault(‘four’,16)
str_one.capitalize()
list_one.extend([1,2,3,4])
graph_one.add_edges([(1,2),(1,3),(2,4)])

Objects have internal state

str_one ="purple’
str_two = 'spectrographically’

>> str_one.count('c')
0

>> str_two.count('c’)
2

>> graph_one.nodes|()
[1,2,3,4]

Classes define objects

*A class is a blueprint for an object.

class Vehicle:

Classes define objects

*A class is a blueprint for an object.
class Vehicle:

def __init_ (self, make, color, passengers, wheels=4, tank=20):
"' Create a new Vehicle Object ™
self.model, self.color, self.wheels = make, color, wheels
self.seats = passengers
self.gas =0

if _name_==' main__ "
my_car = Vehicle('Honda', 'White', 4)
your_motorcycle = Vehicle('Mazda', 'Red', 2, 2)
semi = Vehicle('Mercedes', '‘Black’, 2, wheels=16)

Classes define objects

*A class is a blueprint for an object.
class Venhicle:

def __init__ (self, make, color, passengers, wheels=4, tank=20):
"' Create a new Vehicle Object "
self.model, self.color = make, color
self.seats = passengers
self.wheels, self.tank = wheels, tank
self.gas =0

if _name_ ==' main__ "
my_car = Vehicle('"Honda', 'White', 4)
your_motorcycle = Vehicle('Mazda', 'Red’, 2, 2)
semi = Vehicle('Mercedes', 'Black’, 2, wheels=16)

Classes define objects

class Vehicle:

def __init__ (self, make, color, passengers, wheels=4, tank=20):
" Create a new Vehicle Object ™
self.model, self.color = make, color
self.seats = passengers
self.wheels, self.tank = wheels, tank
self.gas =0

def fill_tank(self,gallons):
"'Add gallons to tank. Until it is full"
self.gas += gallons
If self.gas > self.tank :
self.gas = self.tank

10

Classes define objects

class Vehicle:

def __init__ (self, make, color, passengers, wheels=4, tank=20):
" Create a new Vehicle Object "
self.model, self.color = make, color
self.seats = passengers
self.wheels, self.tank = wheels, tank

def str_ (self):

return 'Gas remaining: ' + str(self.gas)

def _hash__ (self):
return hash(self.make) + hash(self.color) + hash(self.seats) +\
hash(self.wheels) + hash(self.tank) + hash(self.gas)

11

Let's Play With Vehicles

import vehicle

Why Use Classes

Classes are blueprints for objects, objects
model the real world. This makes
programming easier.

Have multiple objects with similar functions
(methods) but different internal state.
Provide a software abstraction for clients to
use without needing to know the details of
your program.

Why Use Classes

class Pizza:
def __init__ (self, name, toppings):
self.name, self.toppings = name,toppings

def is_vegetarian(self):
for tin self.toppings:
if not t.vegetarian:
return False
else
return True

class Topping:
def __init_ (self, name, veg=False):
self.name = name
self.vegetarian = veg

14

Why Use Classes

#make toppings

from pizza import *

cheese, tomato = Topping('cheese’,True), Topping('tomato’,True)
pepper, pineapple = Topping('pepper’,True), Topping('pineapple’,True)
pepperoni, ham = Topping('pepperoni'), Topping(‘ham"')

cheese pizza = Pizza('cheese',[cheese,tomato])
hawaiian = Pizza('hawaiian',[cheese,tomato,pineapple,ham])
combo = Pizza('combo’,[cheese,tomato,pepper,pineapple])

>> combo.is_vegetarian()
True

>> hawaiian.is_vegetarian()
False

Text analysis module

(group of related functions)
representation = dictionary

def

def

def

def

read_words (filename) :
"""Return dictionary mapping each word in filename to its frequency."""
wordfile = open (filename)
word list = wordfile.read() .split()
wordfile.close()
wordcounts_dict = {}
for word in word list:
count = wordcounts_dict.setdefault (word, 0)
wordcounts_dict[word] = count + 1
return wordcounts_dict

word count (wordcounts_dict, word):
"""Return count of the word in the dictionary. """

if wordcounts_dict.has_key(word) : # program to compute top 5:
return wordcounts_dict[word] prog P P)

else: wordcounts = read words (filename)
return 0 result = topk (wordcounts, 5)

topk (wordcounts_dict, k=10):

"""Return list of (count, word) tuples of the top k most frequent words."""
counts_with words = [(c, w) for (w, c) in wordcounts dict.items ()]
counts_with words.sort (reverse=True)

return counts_with words[0:k]

total_words (wordcounts_dict):
"""Return the total number of words."""
return sum(wordcounts_dict.values())

16

Problems with the
implementation

program to compute top 5:
wordcounts = read words (filename)
result = topk (wordcounts, 5)

The wordcounts dictionary is exposed to the client:
*the user might corrupt or misuse it.

If we change our implementation (say, to use a list),
it may break the client program.

We prefer to

—Hide the implementation details from the client
—Collect the data and functions together into one unit

17

Class Implementation

class WordCounts:
"""Represents the words in a file."""
Internal representation:
variable wordcounts is a dictionary mapping words to frequency

def init (self, filename):
"""Create a WordCounts object from the given file"""
words = open(filename) .read() .split()
self .wordcounts = {}

for w in words: # program to compute top 5:
self .wordcounts.setdefault(w, 0) _ .
wc = WordCounts (filename)
self .wordcounts[w] += 1
result = wc.topk(5)

def word count(self, word):
"""Return the count of the given word"""
return self.wordcounts|[word]

def topk(self, k=10):
"""Return a list of the top k most frequent words in order"""
scores _with words = [(c,w) for (w,c) in self.wordcounts.items()]
scores_with words.sort (reverse=True)
return scores _with words[0:k]

def total words (self):
"""Return the total number of words in the file"""
return sum([c for (w,c) in self.wordcounts])

18

Alternate implementation

program to compute top 5:

class WordCounts: .
wc = WordCounts (filename)

"""Represents the words in a file."""
Internal representation: result = wc.topk(5)

variable words is a list of the words in the file

def init (self, filename):

"""Create a WordCounts object from the given file""
self.words = open(filename) .read() .split () Exact same program!

def word count(self, word):
"""Return the count of the given word"""
return self.words.count (word)

def topk(self, k=10):
"""Return a list of the top k most frequent words in order"""
scores_with words = [(self.wordcount(w),w) for w in set(self.words)]
scores_with words.sort (reverse=True)
return scores_with words[O0:k]

def total words(self):
"""Return the total number of words in the file"""
return len(self.words)

A Card Game

Create the base classes that could be used by a
client to create multiple card games.

Blackjack

Spades

Poker

Cribbage

Euchre (24 cards!)

A Card Game: Design

What are some high level classes that might be
useful?

21

A Card Game: Design

What are some high level classes that might be

useful?

Deck
Holds a set of cards, can be shuffled and deal cards into
Hands.

Hand
Holds cards and has basic methods for calculating
properties. (has pair, sum ect)

Card
Takes a face value character, points value, and suit.

22

A Card Game: Design

eUseful functions for Card class

class Card:

23

A Card Game: Design

eUseful functions for Card class

class Card:

def _init__ (self, face, suit, value=1):
"'Create a new card™
self.face, self.suit, = face.upper()[0], suit.upper()[0O]
self.value = value

def is_black(self):
return self.suit =='S' or self.suit == 'C'

def is_face(self):
return not self.face.isdigit()

24

A Card Game: Design

*More magic methods, comparing cards

(Also In class Card:)

def _ eq (self,other):

return self.value == other.value

def It (self,other):
return self.value < other.value

def gt (self,other):
return self.value > other.value

SeeAlso: ne , le , qge

25

A Card Game: Design

eUseful functions for the Hand class

class Hand:

26

A Card Game: Design

eUseful functions for the Hand class

class Hand:

def __init__ (self,cards):
self.card = cards

def value(self):
return sum([c.value for c in self.cards])

def has_pair(self):
"'Returns True if hand has a pair"
for I,c in enumerate(self.cards):
for c2 in self.cards[i+1:]:
If c.face == c2.face:
return True
return False

27

A Card Game: Design

eUseful functions for the Deck class

class Deck:

28

A Card Game: Design

eUseful functions for the Deck class

class Deck:

def __init_ (self,cards):
self.cards = cards

def shuffle(self):

""Randomize the order of internal cards list™

random.shuffle(self.cards)

def deal(self,n=1):
hand_cards = self.cards[0:n]
del self.cards[0:n]
return Hand(hand_cards)

29

A Card Game: Design

eUseful functions for the Deck class

(also in class Deck:)

def len_ (self):
return len(self.cards)

30

